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Preface

The theory of partial coherence has been evolving over the past three
decades or more. During this time, numerous papers and several research
monographs have appeared, covering a wide range of topics at a relatively
advanced level.

There is now a definite need for a textbook to introduce the student to
the basic elements of optical cohercnce theory. The present book is intended
to fill that need. The book presupposes a basic knowledge of interference
and diffraction of light and a familiarity with Fourier theory. The required
level of knowledge of interference and diffraction is that of a good general
physics course at the undergraduate level. Some knowledge of statistics
would be helpful, but it is not absolutely necessary since some basic
discussion on this topic is included in the Appendixes to Chapter 3. The
book may be used for a senior undergraduate or a first-year graduate
course. It can also be used by scientists and engineers working in other
fields of research. They can apply the elements and methods of coherence
theory to their own fields of work. ’

The approach taken in writing this book is that of “back to basics.” A
good foundation will prepare the reader for applications and uses of
coherence theory in the area of interest, without outside help. Homework
problems are included wherever possible. For the most part, they are meant
to further the understanding or to develop a new aspect of the topics
covered in the text. Some references are supplied for the same purpose and
also to give the reader sources for further research into the topic of interest.
There are a few problems that call for short numerical calculations, in order
to provide an understanding of the order of magnitude of the quantities
involved in the theory. "

Insofar as possible, without sacrificing clarity, the book is kept to a
limited size so that a major portion of it may be comfortably covered ddring
a one semester course. The selection of topics was a difficult task. Instead.of
covering a large number of topics inadequately, it was decided to limit the
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Vi PREFACE

topics to what may be called “elements” of coherence theory, including
basic properties of sources and the light they emit. As a result, some topics
that might be expected to be covered in a book on coherence theory are not
included here.

As the title suggests, the subject matter of the book is theoretical.
Wherever appropriate, however, basic experiments are brought into the
discussion so that the reader may appreciate the usefulness of theoretical
concepts and quantities in relation to elementary optical experiments.
Theory inevitably entails derivation of results. This can be lengthy but an
attempt has been made to make it painless. In some cases the details of the
dcrivation are given in an appendix; in others the “route” from one
intermediate step to another is detailed in words. In the discussion of the
diffraction of light in the language of the mutual coherence function (MCF),
Appendixes 5.1 and 5.2 are used extensively to arrive at the result of the
generalized van Cittert-Zernike theorem, which is the working equation for
the rest of Chapter 5.

Chapter 1 discusses briefly the history of coherence theory. Chapter 2
details the complex analytic signal representation, and in Chapter 3 the
MCEF s introduced in this language, with a discussion of the field statistics.
Chapter 4 develops mathematical familiarity with the MCF, along with the
introduction of the concept of noncoherence. It is customary to discuss
noncoherence in terms of sharply peaked narrow functions and an attempt
has been made to introduce noncoherence with emphasis on the property of
the constant or “uniform” spatial frequency spectrum and its interpretation
in parallel with the “white” noise sources of electrical engineering. In this
way, the properties of the noncoherent source follow more easily.

In the field of optics the term intensity is used loosely: Not properly
defined, it has no place in the radiometric scheme. In order not to confuse it
with the term radiant intensity defined in radiometry, intensity is always
qualified with an appropriate adjective. Thus, when referring to the time
average of the square of the field variable, we use the term optical intensity
and denote it by 7 or by I(x) to display the space cootdinate(s). Frequently,
it is necessary to distinguish optical intensity from its spectral version,
which we call optical spectral intensity (OSI) and denote by Jf(x, v). We
follow the Systéme International for units and nomenclature, and for the
purpose of this book we display the radiometric symbols in sans serif type.
Thus, irradiance is denoted by E to distinguish it from the electric field E.
By using a scaling factor C with appropriate- units, we use E = C/ for
irradiance, with units of W m™2. Similarly, € = CJ is used for spectral
irradiance [W m™2 Hz™']. Although this approach entails dealing with a
wide range of symbols and terms, the author feels it is best to follow this
scheme in order to clearly specify what is meant in each particular situation.
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As much as possible, an atiempt has been made to keep the notation
uniform throughout the book. A list of symbols, notation, and abbreviations
is also given.

Chapter 5 deals with the propagation of the mutual coherence function
(MCF) and related topics. The generalized van Cittert—Zernike theorem and
the van Cittert-Zernike theorem with noncoherent sources are discussed. By
way of example, it is shown how the partially coherent-source result
approaches the noncoherent-source result by going to the limit of the
constant spatial frequency spectrum. The Thompson and Wolf experiment,
the Michelson stellar interferometer, and the: two-beam interferometer are
studied to explain the spatial and temporal coherence of light. The book is
concerned exclusively with the second-order statistics, namely, the mutual
coherence function. The Hanbury-Brown and Twiss interferometer is men-
tioned only briefly, to make the reader aware of the relatively recent
advances. The chapter continues with a discussion of how the beam energy
is distributed (spread out) in the right half-space after it leaves the source.
The measurement of the mutual coherence function is discussed at the end.

The propagation of the MCF is used to discuss image formation in
Chapter 6. The discussion makes use of the object and image space spatial
frequencies defined with the object and image distances measured from the
entrance and exit pupil planes, respectively. In theoretical formulations,
there is a tendency to omit the “constants” that occur outside of the
integrals or to collect several constants under one common constant as the
development proceeds. This “snowball” effect has been avoided. As a result,
the relationships in the chapter may be verified for dimensional balance at
every stage of the development. In Chapter 6, Hopkins’ effective source is
introduced in order to study the influence of partial coherence on optical
imaging. The chapter ends with a summary and a brief discussion of
resolution criteria. In particular, it is shown how the various resolution
criteria are special cases of the one that may be formulated by use of the
spatial coherence function and the van Cittert—Zernike theorem. ‘

The last chapter, Chapter 7, is on radiometry. After a brief review of
conventional radiometry, a study is made of the properties of the noncoher-
ent source. The study is based on the well-established diffraction calcula-
tion. It is shown that the idealization of noncoherence in the theory of
partial coherence is the same as the idealization of a Lambertian source of
conventional radiometry. Two approaches to generalized radiometry appli-
cable to sources of any state of coherence are presented. The results of the
special cases derived in the first approach (largely unpublished) are tabu-
lated for ease of reference. The second approach, pioneered by Walther,
Marchand, and Wolf, is also discussed along with the results that follow for
some of the special cases. Because the discussion is brief, the original paper
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of Marchand and Wollf is reproduced in Appendix 7.2. No attempt is made
(at least not intentionally) to upgrade or downgrade one or the other
approach; only the results as they follow for the special cases are displayed
for ease of comparison by the reader. A word of caution to the reader at this
point: the first approach is given in order to observe what the results would
be if that path were followed; the approach that is widely used throughout
the literature is the one .due to Walther, Marchand, and Wolf.

I offer sincere thanks to my former professors, H. H. Hopkins and E. L.
O’Neill, with whom 1 have had the pleasure of associating and studying
optics. I should also like to- express my appreciation to Professor E. Wolf,
who has done so much for so long in the field of -optics and from whose
wide range of publications I learned coherence theory. I am extremely
fortunate to associate with the distinguished faculty of the Optical Sciences
Center, University of Arizona. In particular, my association with Professors
H. H. Barrett, R. V. Shack, R. R. Shannon, P. N. Slater, and J. C. Wyant
has proved to be a valuable learning experience through helpful discussions.
It is a pleasure to acknowledge helpful discussions on radiometry with
Professor W. L. Wolfe, Dr. F. O. Bartell, and Dr. J. M. Palmer. And, of
course, in an institution of learning, the students form an important
component: | am thankful for their discussions and, in particular, I should
like to mention Dr. M. J. Lahart, Dr. V. N. Mahajan, and Dr. R. E.
Wagner. Furthermore, I am especially grateful to Professor P. A. Franken,
Director of the Optical Sciences Center, for providing an environment
conducive to learning 'and for his constant encouragement.

Many thanks to Don Cowen for the ink drawings of the figures in this
book. My special appreciation and sincere thanks to Martha Stockton for
reading, editing, typing and reediting and retyping the manuscript. If the
reader should find the book readable it is because of her untiring efforts.
However, I shall appreciate a brief communication upon discovery of errors,
for they are entirely my own.

ARvnfu) S. MARATHAY

Tucson, Arizona
April 1982




Symbols, Notation, and Abbreviations

a,
a,, b,

‘.

A(x — m§)
o
Besinc (x) = 2Jy(x)/x

BFP
c
c-radiometry

cyl(r,/a)

c), 15, v)
Cc

E()
EP
ESP
E

E

~

E
/.8

f=a/As, g = B/As

radius of lens or entrance pupil

radius of exit pupil

radius of circular source

rectangular source sides

coherence area for spatial coherence
Fourier transform of the exit pupil function
symbol for area

J, is the Bessel function of order 1 and x stands
for the unitless argument

back focal plane

speed of light in vacuum

conventional radiometry

L n<arn=(x2+)”

0, rn>a

Hopkins’ frequency response (HFR) function

suitable constant for use with the scalar field y:
E=C(y*)=CI

ensemble average

enclosed power

enclosed spectral power

electric field vector .

irradiance [W m~2]

spectral irradiance [W m~2 Hz ']

pair of spatial frequencies: f = (1/A)p,
g=(/A\)q

object-space spatial frequencies

XV




X\
f=if+jg

= ol /A5’
gr’\: B//AASI
f/ — if/ + jgl

FOV

FTS
g-radiometry
HFR

K -]
1=y
|

i

‘](J' ‘Il’ J3/2
k =2m/X\
K(Q, P)

LHS
L L

£(a’)

(A7),
m

mﬁ
MCF

' MOI
MSDF
MTF
M

M
(N.A),
(N.A),
ol
OPD

SYMBOLS, NOTATION, AND ABBREVIATIONS

two-dimensional vector for object-space fre-
quencies

image-space spatial frequencies

two-dimensional vector for image-space fre-
quencies

field of view

Fourier transform spectrometry

generalized radiometry

Hopkins’ frequency response

Hilbert transform of [ - - - ]; see Eq. (2.18)

optical intensity, Eq. (2.

radiant intensity [W sr‘?f

spectral radiant intensity [W sr™! Hz ]

Bessel functions of order 0, 1, 3/2 respectively

propagation constant -

approximate multiplicative free-space propaga-
tor for light from P to Q, Eq. (5-142)

left-hand side _

radiance [W m 2 st~ '] and spectral radiance
[W m™2 sr™" Hz™'), respectively

amplitude and phase transhljttance of the sys-
tem described in the exit pupil coordinates

coherence length "

image magnification

pupil magnification

mutual cpherence function

mutual :Xtical intensity

mutual spectral density function

modulation transfer. function

radiant exitance [W m™2]

spectral radiant:exitance [W m~2 Hz ']

numerical aperture of the condenser

numerical aperture of the objective

optical intensity

optical path difference

2




SYMBOLS, NOTATION, AND ABBREVIATIONS xvii

OSI
OTF
p.q.m

PSF

QH source

QM field

Q

r2 :A (*“122:" )’122)”2

r=ix+jy +kz
= irsinfcos ¢
+jrsinfsin¢
+krcos 8

Rect(x/a,)

RHS

s(t)
5(v)

sgn(»)

s=§x:+iys+l;z

s

Scoh’ 7::oh

S,

ncoh*

T,

ncoh

Spooh > Tpooh

Spoly’ Tpols'

SFS

optical spectral intensity
optical transfer function
direction cosines: m =
+ (1 - p? —-qz)]/z, pP+qgt<1
+i(p?+ 42— 1) PP+ g7 > 1
point spread function

quasihomogeneous source
quasimonochromatic field

~energy in the field [joules] [J]

radius vector in difference coordinates
position vector
with spherical polar coordinates

rectangular function, equals unity for | x |< g,
and zero for | x|> a,

right-hanc side

temporal Fourier transform of §(»)

step function, equals +1 for » = 0 and zero for
y<0

signum function, equals +1 for v > 0 and —1
for » <0; see Eq. (2.23)

point on a surface &

amplitude, impulse response, aad transfer func--
tion of the lens system, respectively, for the
coherent case

impulse response and transfer function of the
lens system, respectively, for the noncoherent
case

impulse response.and transfer function of the
lens. system, respectively, for the partially
coherent case

impulse response and transfer function of the
lens system, respectively, for the polychro-
matic case in the noncoherent limit

spatial frequency spectrum




Sine(x) = (sin x) /x

!

! neoh

{ob(& ")
(Av),

[

V()

v, t)

V(’)(t)

V(r)

V(»)

]}(r)(,.)

V(kp, kg, 2, t)

lo/(xp, kg, z, V)

X

§ 3 ¥ ¢

y
W(a') = W(«, B')

WMW

74

X, P, Z

X2 = X T X
Yi=h 0
X =ix+iy
a =la+jﬁ

SYMBOLS, NOTATION, AND ABBREVIATIONS

x is a unitless argument of the trigonometric
sine function

time variable [s]

normalized form of T, OTF

amplitude transmittance of the object

coherence volume

Michelson’s visibility function for interference
fringes ,

= (1/V2)IV(e) + iVO(1)), analytic signal

analytic signal for the field at point r

imaginary part of the analytic signal

real physical field '

temporal Fourier transform of V(¢)

complex temporal Fourier transform of V{)(¢)

two-dimensional spatial Fourier transform of
Vi, 1) ’

total (spatial and temporal) Fourier transform
of ¥(r, )

visibility

coherence width

coherence width for spatial coherence along x

coherence width for spatial coherence along y

wavefront aberration in the exit pupil coordi-
nates '

Walther, Marchand, and Wolf approach
energy density (field) [J m—3]

space coordinates

difference coordinates

two-dimensional vector and coordinates for the
image plane . ‘

twq-dimensional vector and coordinates for the
entrance pupil . v

two-dimensional vector and coordinates for the
exit pupil -

two-dimensional vector and coordinates for the
effective source




SYMBOLS. NOTATION, AND ABBREVIATIONS

()
[ v ]

712(0)
Y12 7) =] Y12 exp(+idy;)
f’(") =¥,(»)

Fi20»)
Ty(m)

IA‘n(”)

1-‘I 2(0)

Tyy(ny, 13)
=1, t;;15, 1)

I:IZ(T) =T(P, P, 1)
) ')

T(fl’ 81> o1 820 2, T)

i“\'fp & frs 82,2, 7)
8

(7

8(x — x)
d(x — Xx')

= 8(x = x)3(» = )
8(2)(51 —s;)
Av
€
E=it+jn
g-g=g -+
déE =dédn
& =& )
k= 1/A

Xix
complex degree of self-coherence

degree of partial coherence of light from points
1and 2 :

complex degree of spatial coherence

normalized MCF, complex degree of coherence

when points P; and P, coincide, normalized
spectrum

temporal Fourier transform of v,,(7)

self-coherence function; describes temporal
coherence

optical spectral intensity (OSI), spectral density
function, temporal Fourier transform of
T(r)

MOI for a pair of points P, and P, 7= 0;
describes spatial coherence

mutual coherence function for the nonsta-
tionary case

mutual coherence function

MSDF for a pair of points P, and P,; it is the
temporal transform of I',(7)

spatial Fourier transform of Fu(7); (f, 8), pair
of spatial frequencies

spatial and temporal Fourier transform of I', (1)

Kronecker delta, equals unity for g = p’, zero
otherwise

one-dimensional Dirac delta function

two-dimensional delta function using two-di-
mensional vectors x and x’

two-dimensional delta function with three-di-
mensional vectors s, with components
Xos Vir 25

spectral spread of QM fields

enclosed power

object-space two-dimensional vector

square of the vector length

area element

function of £ and 5

kappa, reciprocal of the wavelength
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SYMBOLS, NOTATION, AND ABBREVIATIONS

wavelength of light in vacuum
temporal frequency [s™']

mean frequency of a QM field
dijtance between P; and Q, j = 1,2
time delay

coherence time

average radiant power [W]
spectral radiant power [W Hz ™!}
scalar field function

circular frequency

angular brackets for time average
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The rectilinear propagation of light has always been more or less self-
evident to even the most casual inquirer. Less obvious has been the periodic
nature of light. The first experiment to offer a glimpse of the periodicity of
light was done by Grimaldi (1613-1663), who used sunlight to observe
fringes in the shadow of a hair. The hair was arranged accurately parallel to
a narrow vertical slit opening in an otherwise opaque window shade.

Newton (1642-1727) devised a variety of experiments in the study of
light, and by the Newton’s rings and related experiments he discovered clear
evidence of light’s periodicity. In explaining his results, Newton found it
necessary to associate something periodic—he called it “fits” —with light
rays, which until then had been regarded as uniform. He determined the
interrelationships among length of period, color of light, and refractive
index, and also found the law of the radii of the bright and dark rings in a
single color of light. Newton was a thorough experimentalist, whose experi-
ments were much more refined than those of his predecessors. However, he
made it perfectly clear that he was not interested in idle hypotheses. At
times he offered analogies, like the waves created in a pond by a falling
stone, but he refrained from hypothesizing and emphasized the importance
of accurately describing the findings. During Newton’s lifetime, Huygens (in
1690) had proposed the wave hypothesis for light and had given his method
for calculating the future shape of the wave front. But these considerations
did not influence Newton’s explanations of his own experiments.



