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Preface

This is not a work of scholarship. . . . I write for the unlearned about things in which T am
unlearned myself. If an excuse is needed. . . for writing such a book, my excuse would
be something like this. It often happens that two [students] can solve difficulties in their
work for one another better than [a] master can. The fellow-pupil can help more than
the master because he knows less. ... I write as one amateur to another, talking about
difficulties I have met . .. with the hope that this might at least interest, and sometimes

even help, other inexpert readers.
—C. S. Lewis

Reflections on the Psalms

As there are available now a number of excellent modern books on dynamics, some-
one who produces yet another, perhaps not as excellent, had better be ready with an
apology. Two superb examples of the more comprehensive and scholarly offerings
currently in print are Foundations of Mechanics, by Abraham and Marsden [1] and
Analysis, Manifolds and Physics, by Choquet-Bruhat and DeWitt-Morette [22]. If
you were to purchase either of these two, say, instead of the one you are holding, and
commit yourself to absorbing at least one page each day for a year or two, the (non-
monetary) rewards would be incalculable. Unfortunately, many of us who seriously
need to know this material are either unfamiliar with or intimidated by advanced
formalisms. The present volume is, in some sense, a mathematical halfway house
between such works and more introductory material, such as Symon’s Mechanics
[87] or Goldstein’s Classical Mechanics [41]. It may be considered a supplement to
these excellent texts and is written at a level suitable for first-year graduate or senior
undergraduate physics students.

Other books, such as Rasband’s Dynamics [79], attempt this as well. One feature
that may distinguish this book from it, and others, is the emphasis placed, via exam-
ples and problems, on beam physics, more particularly, on the orbits of particles in
synchrotrons and storage rings. Partly, this is due to accidental, personal history. It
is also true, however, that accelerator physics is one of the areas in which classical
mechanics plays more than an academic role. To people designing accelerators and
studying their behavior, it is the bread and butter of everyday existence. The historic
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successes of high energy physics has been due in no small measure to the ability of
these people — from the designers and theorists to the operators in control rooms —
to persuade large numbers of like-charged particles to travel billions of kilometers
while staying within centimeters of each other, increasing their energy continually,
and eventually either directing them to a target or colliding them at a focus narrow
enough to make the entire enterprise worth the effort. Now, while several texts on
dynamics contain numerous examples from fields like celestial mechanics or me-
chanical engineering, beam physics has been generally underrepresented. Given its
impact on physics as a whole, it is fitting that at least one dynamics text draw from
accelerator issues for its motivations and examples.

Much has been written recently about a revolution taking place in the asymptotic
analysis of dynamical systems, usually illustrated with beautiful color photographs
of objects like chaotic attractors, fractal basin boundaries, and other such Julia-Fatou
sets. The first shots of this revolution were fired, however, not in the 1980s or 1970s
but toward the close of the nineteenth century. By 1892, Henri Poincaré already had
published his landmark work Les Méthods Nouvelles de la Mécanique Céleste in
which he advanced the theses that differential equations should be viewed as geomet-
ric objects, in particular, as vector fields on manifolds, and that questions concerning
the long-term stability of a dynamical system might be attacked by studying the
topological properties of these objects as revealed by maps. In particular, he formu-
lated the goal of finding the dynamically invariant regions of different dimensions
and determining how they connect with each other to impose structure on dynamical
systems. His work even led him to recognize the extraordinarily complicated behav-
tor of orbits in the vicinity of a separatrix, what today we call “chaotic orbits” and
identify as invariant regions of fractal dimension. Much like his predecessor Newton,
Poincaré found that ideas and language which he needed did not yet exist and that he
had to create entirely new mathematics in order to progress. In time the seeds that he
planted grew into branches of modern topology, with all its trappings of tangent and
cotangent bundles, differential forms, exterior algebra and calculus, homology and
cohomology — all of which are frequently associated with advanced topics, such as
general relativity or string theory, but are almost never mentioned in connection with
their primary source, good old classical mechanics.

The benign neglect accorded to Poincaré in this country' was only partially shared
by Sophus Lie, whose constructs are all too frequently not taught to physics students
until the study of quantum angular momentum or, even worse, quark models. Because
Lie’s ideas are first presented in such contexts, their initial connection with dynamical
systems tends to be forgotten, and it is easy for a student to think of Lie groups only
in terms of finite representations and Dynkin diagrams. The appropriate place to
introduce Lie groups is in a course on classical mechanics. We shall attempt to do
that in as natural a manner as possible, following the track of his algebraic constructs

I A recent dismissal occurs in a very enjoyable article [19], in the beginning of which a great physicist, while
paying hornage to a late colleague, parenthetically laments, “1 regret to say that he preferred Poincaré . . . to
Einstein.” The irony is that you are likely to understand Einstein more easily — or, more precisely, a
modern exposition, such as Misner, Thorne, and Wheeler’s Gravitation — by paying some attention to
Poincaré early in life.
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from their setting in vector fields, through their use in Hamiltonian systems, and in
the construction of normal forms.

In 1969 Deprit [28] discovered an algorithm, built on the Lie algebra of Poisson
brackets, for performing perturbation theoretic calculations in celestial mechanics.
In 1981 Dragt independently introduced another Lie algebraic method, based on
discrete maps rather than continuous flows, into accelerator theory. (I was fortunate
enough to be assigned the task of editing his lecture notes [2, 30], little suspecting
that they would bifurcate my life.) To some these “new” formalisms at first appeared
mysterious and somewhat contrived, computational tricks that seemed to have little
physics motivation behind them. That this misperception arose may not be totally
disconnected from the fact that the key ideas frequently do not appear in most core
physics curricula, and practically never in connection with classical mechanics. (This
neglect does not extend to generating function techniques, for example, which do
possess a strong academic tradition.) We shall introduce the tools naturally in a
classical setting so basic that it can be used even at the undergraduate level. We shall
also attempt to demonstrate the relations between these “new” methods and the more
“traditional” ones used in accelerator physics since the 1950’s. What makes the “new”
methods so exciting is their imbedding within an effective computing environment.
Nonetheless, the underlying ideas go back more than a century. Those who earn their
bread, sausage, and beer by using classical dynamics have a glorious heritage, one
that is frequently disconnected from its roots.

Itis ironic that as we approach the end of the twentieth century, classical mechanics
is undergoing a renaissance; it remains a lively subject of active research, both in
its own domain and in its connections with quantum theory. This is largely due
to advances in computation, both symbolic and numeric. Advanced graphics has
played a special role, giving us a new “lens” that has opened all our eyes to behavior
that previously could barely be imagined only by the most brilliant. In contrast to
the impression acquired by too many during their formal education that “classical
mechanics” is a dull, closed subject with no mysteries left to explore, the work has
Just begun, and its prospects are exciting.

This volume grew from courses and lectures given at Northwestern University, at
Harvard University, and at Accelerator Schools sponsored by the DoE and organized
by Melvin Month. The Accelerator Schools especially have produced much needed
documentation on the art and science of accelerators in the form of A.I.P. Conference
Proceedings, and they have been a source of fine over-the-shoulder bags as well. My
thanks to Melvin Month for giving me a forum for lecturing and for encouraging
me to write this book. Additionally, I would like to acknowledge the good fortune
of having worked closely with Don Edwards as my first supervisor at Fermilab; I
continue to benefit from this early exposure to his physical insights, knowledge, and
wisdom. Additionally, I owe a debt of gratitude to Shoroku Ohnuma, who would
continually ask the most disturbing and tantalizing questions, only a few of which
we ever got around to answering; some of the others are addressed here. As already
implied, to Alex Dragt lies the credit for starting the whole business of using Lie
operators to solve accelerator problems, and his influence has been pivotal. And |
have benefitted from several recent interactions with Etienne Forest, whose insight
into the perturbation theories of accelerator orbits is unmatched.,



____ PREFACE

xii

I want to thank one unknown reviewer who read the first rough draft of this book
and made several suggestions, many of which I have tried to incorporate into the text.
Most of all, however, I thank him for his generous, positive response, without which
I probably would have dropped the project.

Regarding the technical errors, the manuscript suffers from not having had a
horde of students critically reading the pages for several years, checking the proofs,
repeating the calculations, and solving the problems. I regret that very much. How-
ever, unlike my colleagues in the universities, I do not have this marvelous resource
of undervalued labor at my disposal. So, I must apologize for whatever errors re-
main — typographical, algebraic, and conceptual — and I urgently request that you
communicate them to me as they are unearthed. If possible, I shall archive errata, and
make them electronically available to interested reader(s).

A final word to the heroes who actually make accelerators work, most of whom
already know it well, though it tends to get submerged: Your field deals with more
than environmental impact reports, data bases, impedance measurements, or even the
“kick turn turn kick turn . . % of tracking programs. As was written somewhat earlier,
“[t]hose who earn their bread, sausage, and beer by using classical dynamics have
a glorious [physics and mathematics] heritage” that should be enjoyed and, more
importantly, used. '

Leo MICHELOTTI
St. Charles, lllinois

>The beginning of a line taken from The Producers, by Mel Brooks, the end of which is also appropriate.
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CHAPTER 'I

Prologue:
The Pendulum

If we want to know where Jupiter will be so as to plan properly the Jupiter shot, then
we may proceed in one mathematical direction. If we are interested in whether the solar
system is dynamically stable or unstable, we will have to proceed in another. In view of
the inherent difficulties of the mathematics, the art of modelling is that of adopting the

proper strategy.
— Philip J. Davis and Reuben Hersh

The Mathematical Experience

It is in high school that we are first taught to write Newton’s Law as, “F = ma.” This
pedagogical blunder is usually compounded some time later by a teacher of Freshman
Physics who one day draws a simple pendulum on a blackboard, more or less as in
Figure 1.1, writes the equation of motion, from F = ma,

— mgsin 8 = mi#, (1.1)

and, barely pausing for breath, notes that sin § = 6, provided  is “small,” thus
transforming this equation into that of a harmonic oscillator,

6=~ —(g/D8,

with a basis of two linearly independent solutions,

sin w,t
0 = o w, = l.
{cos wol, ¢ 8/

All of which is correct, as far as it goes. Regrettably, the teacher of Freshman Physics
probably stops the analysis at that point and never returns to consider the motion in

I
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FIGURE 1.1 Simple pendulum: the archetypal nonlinear dynamical system.

more detail. The reason for abandoning the problem is obvious. If you ask the “orbit
history” question — “Given initial position and velocity at time ¢ = 0, what is the
position at time ¢ # 0?” — then the answer is complicated: in particular, it involves
elliptic functions, and freshpersons are not expected to know about such things. This
question was the dominant paradigm of physics during the eighteenth and most of the
nineteenth centuries: “solving” a dynamical system meant determining its history.

However, there is another sort of question that is easier to answer and, in some
ways, more interesting. For the purposes of this chapter, it can be motivated with the
observation that the total energy of the pendulum,

E = jmv* + V(6)

= 1m(16)* — mgl cos 6

2

L
=3 — lw? cos 6, (1.2)

is conserved. In the final line, we have written E in terms of the moment of inertia,
I = ml?, and angular momentum, L = /9. If we plot the level sets of E — that is, sets
of phase space points for which the value of E is constant —

Pw = {(6,L) | E(6,L) = W},

the resulting curves are paths constraining the system’s orbits, as sketched in Fig-
ure 1.2. The direction of the orbits is obtained from the definition of L: L& > 0.
This picture of the orbit space, sometimes called a “flow diagram,” does not contain
enough “orbit history” information to answer the original question, but it does contain
an enormous amount of qualitative information about the topological classification
of possible orbits and the relative likelihood that an orbit will belong to one class or
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FIGURE 1.2 level sets of E are paths for the pendulum.

another, the kind of information more appropriate for estimating long-term stability.
What it shows is a view of all possible paths that the system can traverse, corre-
sponding to all possible sets of initial conditions. Obtaining and interpreting such
information form much of the subject matter of “qualitative dynamics.”

The remainder of this opening chapter will be devoted to motivating some formal
concepts and useful jargon as quickly and painlessly as possible. Before continuing,
let me issue a small warning: those who are totally unfamiliar with the more abstract
branches of mathematics should simply skim over parts that make them feel uncom-
fortable. On the other hand, those who are familiar with them to an unhealthy extent
may be offended by the cavalier, heuristic manner in which objects such as “charts”
or “bundles” are introduced. In either case, please read what follows in the spirit in
which it is intended; try to get through it once quickly, getting a feel for the material
without bogging down in details. There will be sufficient opportunities for that later.

Critical Orbits and Separatrix The principal feature that appears in Figure 1.2
is the existence of two fixed points — orbits for which . = § = 0 — positioned at
L = 0 and 6 = 0 or 7. Physically, these correspond to a pendulum at rest, either in
the “down” or “up” position. The first fixed point, which is clearly the more stable
one, is called an “elliptic” fixed point for the obvious reason that the paths of orbits
in its neighborhood look like ellipses. For a similar reason, the second is called
“hyperbolic.” Loosely stated, the chief difference between them is this: orbits that
pass close to an elliptic fixed point remain close to it; in contrast, almost all orbits
that pass close to a hyperbolic fixed point do not remain close but pull away.

The disclaimer “almost all” is required in the previous sentence.! If we focus
attention on the neighborhood of the hyperbolic fixed point, we find special orbits

"This phrase “almost all” almost always means “all but a set of measure zero,” which in turn means “ali
but a set that has no volume.”
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that close in on it. All orbits that approach a hyperbolic fixed point as ¢t — + (resp.,
1 — —oc) comprise its “stable (resp., unstable) manifold.”” In this case, there is only
one hyperbolic fixed point and two such orbits, one for L > 0, the other for L < 0,
both of which belong to either kind of manifold. Therefore, in our example, the stabie
and unstable manifolds are, in fact, identical. That is not generally, or “generically,”
the case.

Taken together, the union of hyperbolic fixed points and their stable and unstable
manifolds form an object called a “separatrix.” Its name derives from the obser-
vation that this collection of orbits organizes the (6, L) “phase space” by partition-
ing it into regions. To complete the terminology, the “center manifold™ of this
system lies within the “island” that is bounded by the separatrix. The orbits in this
island are characterized by bounded excursions in the angle coordinate, 8; speak-
ing physically, their energies are t0o small to overcome the potential barrier associ-
ated with going over the top. Those “outside” the separatrix have unbounded angle
excursions.

The pendulum is a very simple system, but this pattern, or its generalization,*
appears again and again throughout dynamics. The search for separatrices and the
study of their properties comprise much of “nonlinear dynamics.” It is a fundamental
problem, closely related to the search for the smallest invariant subspaces of different
dimensions — a task akin to the group theoretical problem of finding irreducible
representations.

Amplitude Dependent Frequencies An important feature, not apparent in the
static diagram of Figure 1.2, is that the frequency of a pendulum’s orbit depends on
its amplitude. This is the first and simplest attribute of nonlinearity. The academic
folklore of pendula, which overly emphasizes their connection with harmonic oscil-
lators, contains a charming, apocryphal story about Galileo daydreaming in church,
timing the swings of a chandelier with his pulse, and noting that their period remained
the same as the motion wound down to rest.’ In fact the period cannot be constant.
By continuity, orbits must move slowly in the vicinity of the hyperbolic fixed point.
Correspondingly, those orbits that pass closely to this fixed point will take longer to
complete their cycle. Therefore if we plot the frequency of an orbit as a function of
its energy, we shall get a curve, like that in Figure 1.3, which approaches w, for smalt
E and vanishes at £ = w2, the energy associated with the hyperbolic fixed point.
Asymptotically, when the energy is large, the potential energy becomes negligible
and we have E =~ J@w?/2. Therefore the frequency grows as v/E as E — ,

As there is a one-to-one correspondence between the energy of a pendulum and
the amplitude of its motion, for E < I g, suitably rescaling the abscissa of Figure 1.3
would change it into a plot of frequency versus amplitude.

2Simply calling it this does not establish that it is a manifold. Indeed, at this point we have not even
discussed what constitutes a manifold,

3More precise definitions will be given in the next chapter.

4We shall see that separatrices possess more complicated structure in higher dimensions.

STf the story is true, I suspect that Galileo’s pulse rate must have increased as he became more excited by
his discovery.
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FIGURE 1.3 Rough sketch of frequency versus energy for a simple pendulum.

Phase Space Consider now the very space into which orbits are imbedded, the
space that is, in fact, the union of all the paths followed by orbits. Figure 1.2 is drawn
as though this were two-dimensional Cartesian space, R? = R X R.® It is not: any
two ordered pairs of the form (8,L) and (6 + 27n, L), where n € Z is an integer,
represent the same physical state and therefore must be considered “equivalent.” We
express this formally by setting up an equivalence relation.’

6.LY=(,L") means L=L'andInE€Z:6 =06+ 2m.

The appropriate mathematical object that corresponds to a state of the pendulum is
not a single ordered pair but a set of equivalent ordered pairs,

l6.L]1={(6",.L) [ (#',L") = (8,L)}, (1.3)

which is called the equivalence class of the ordered pair. The true phase space of the
system, the space of physically inequivalent states, is technically a “quotient space,”
which means it is a set of equivalence classes.

P={l6,L]]| (8,L) € R?}.

A moment’s reflection is sufficient to convince one that Pis a cylinder (see Figure 1.4),
equivalent to the cross product of a circle with the reals, 7 = §! X R.

What this means is something more profound than is apparent at first: the stage on
which a system even as simple as a pendulum plays out its history is not Cartesian
space but a manifeld, more particularly, a differentiable manifold. These objects are

®Notation for a few famous sets: R = reals; Z = integers; §” = n-dimensional sphere; T" = n-
dimensional torus.
7Common set-theoretic notation: ¥V = “for all,” 3 = “there exists,” and € = “is in the set.”
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FIGURE 1.4 The phase space of a simple pendulum is a cylinder.

the subject matter of the most sophisticated, advanced mathematical disciplines ever
devised. We shall not even pretend to attempt to begin to do them justice. Fortunately
for our purposes, most physicists have an intuitive and generally sufficient under-
standing of “manifolds” as an extension of “surfaces,” such as spheres, cylinders, or
tori. Their important feature is that they are locally Cartesian. This means that each
point on the manifold belongs to a local region on which we can introduce a system
of Cartesian coordinates, formally called a chart. More correctly, localized, open sets
of an n-dimensional manifold are coordinatized with open subsets of R", usually
containing the origin. A collection of such charts which covers the entire manifold —
with some overlap between charts so as to patch them together smoothly — is called,
appropriately enough, an “atlas.” (One need only think of real atlases used to map the
Earth to get the idea.) Of course, we are glossing over innumerable technical details.
For example, the business of patching charts together smoothly means that if two
charts overlap, there must exist, as part of the atlas itself, a “smooth” transformation
connecting the coordinates associated with those points that belong to both of them.
If z € R" and 7/ € R" are the n-tuple representatives of the same point, p € P,
on two different charts, then the transformation is a one-to-one, highly (usually in-
finitely) differentiable function, T : z = z'. Furthermore, if two atlases cover the
same manifold, then there are smooth transformations connecting pieces of charts
corresponding to the same open sets on the manifold, what physicists think of as
“coordinate transformations.” The key idea that these and other elaborate construc-
tions are meant to express is that a manifold is an object which can be represented, or
coordinatized, in a large number of ways but which we want to think of as an entity
superceding all these representations.

A dynamical system — or a “dynamic” —is actually associated with a number
of related manifolds. First, there is the configuration manifold, which labels its
instantaneous “position” without information as to how that position is changing. For
example, the configuration manifold of a harmonic oscillator marks its position along
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FIGURE 1.5 Charts for 5!, the configuration manifold of a pendulum.

a line and is (topologically equivalent to) R, the set of reals, while that of a pendulum
would be (topologically equivalent to) a circle, S .2

S'={(x,y) ER? | x* +y* = 1}.

Now, atthough (x, y) Cartesian pairs are used here to define !, they cannot serve
as coordinates: S! is a one-, not two-dimensional object. We have already used an
angle coordinate, 6, to denote the pendulum’s position, but in fact, S 1 (0] 6€
(=, )}, as this would neglect the upper position of the pendulum, (0, 1). Similarly,
using a half-closed interval, S' = {0 | 8 € [—, %) }, would not work, as it would
produce a discontinuity in the coordinate.® An atlas containing at least two charts,
say () and (3, is required to specify coordinates properly on S !.One such atlas is
sketched in Figure 1.5.

st=sluUsj,

Si={y ER ¥ +y* =landy+ —1} = S! — {(0, - 1)},
S;={) ER* | +y =landy # 1} =§' - {0, 1)},
Ci:(—mm)— S|, 6; — (sin 6y, cos 8,),

Gi(—m, 77)—'52', 0, — (—sin 6, — cos ;).

We have made the overlap between these two charts rather large, almost all of § !, in
fact. That was not necessary; nothing would be lost by restricting the domains. It also

§We shall use the phrase “topologically equivalent to” only sparingly, as it tends to burden presentations
without adding much information. It should be considered present but suppressed in sentences like, “This
surface is a torus.”

%Usually, charts are open sets; exceptions are made for manifolds with boundaries.



