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PREFACE

The rapid advances in semiconductor technology have led to an increasing
variety, improving performance, decreasing cost, and expanding application of
high speed digital integrated circuits.

In addition to conventional circuit design, the efficient utilization of these
circuits aiso requires the use of high speed pulse and digital techniques that up
to now could be found only scattered among many books on circuit theory,
pulse circuits, and computer-aided circuit design, and in various catalogs and
journals. This book presents such techniques in one volume and in a form ori-
ented toward the user of high speed digital circuits. It is based on the author’s 25
years of experience in high speed pulse and digital techniques.

A complete treatment of the subject requires the use of calculus and com-
plex variables. Nevertheless, a prior knowledge in these fields is not needed for
this book, except for footnotes and some optional problems. However, some
elementary features of calculus are introduced and used in the text. The presen-
tation is liberally interspersed with worked examples that support the introduc-
tion of new concepts. The problems at the end of the chapters enable the reader
to broaden and test his understanding of the material; answers to selected prob-
lems are given at the end of the book.

ARPAD BARNA

Palo Alto, California
December 1979
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CHAPTER 1

‘OVERVIEW

This book describes pulse and digital techniques that are applicable to the use -of
today’s high speed digital integrated circuits with operating speeds of 1 to 10
nanoseconds. Perhaps not too surprisiugly the use of such cireuits presents more
problems in interconnections and the associated time constraints than slower
circuitry. For this reason a substantial part of the book deals with passive R-C,
R-L, R-L-C, and transmission line circuits. However, many of these considera-
tions are strongly related to the internal structure of the integrated circuits,
hence a treatment of the high speed properties of diodes and bipolar transistors
is also included. Further, properties of the two fastest digital integrated circuit
families, the ECL and the Schottky-diode-ciamped TTL, are also discussed.

Chapter 2 reviews basic results of linear circuit theory. However, in addition
to the traditional treatment emphasizing wideband amplifiers, the chapter also
presents material that is oriented toward problems arising from grounding and
crosstalk in digital systems.

Chapter 3 provides a treatment of diode circuits. Properties of junction
diodes are discussed in detail, as they are basic to the understanding of transistor
operation. Computer-atded design methéds are introduced and applied to dc and
transient analysis in diode circuits—these methods are also applicable to transis-
tor circuits. A brief discussion on tunnel diodes and tunnel-diode circuits is also
included. _

Chapter 4 treats bipolar (junction) transistors and circuits using them. A
complete description of a high speed bipolar transistor would require a model
using about 26 parameters. However, the-treatment here is restricted to simple
models focusing on properties that are of principal importance in high speed
pulse and digital circuits. The chapter also includes a discussion on.emitter
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2 OVERVIEW

follower stability, a description of Schottky-diode-clamped TTL circuits, and
an analysis of propagation delays and transition times in emitter-coupled logic
(ECL) circuits.

~ Chapter 5 provides a description of transmission- lines and their use in
digital systems. It treats propagation delay, capacitance, and inductance, and
describes coaxial, stripline, and various other transmission line configurations
that are used in digital systems. Transients in transmission lines are analyzed for
~ linear resistive and capacitive terminations, as well as for nonlinear resistive
termination encountered in use with TTL circuits. A brief discussion of losses
in transmission lines is also included.



CHAPTER 2

LINEAR CIRCUITS

This chapter describes basic properties of linear components and circuits with
emphasis on characteristics that are utilized in high speed digital circuits. Time-
domain properties of resistors, capacitors, inductors, and voltage and current
sources are described, followed by the introduction of the unit step, the expo-
nential, and the logarithmic functions.

Transient responses of R-C. circuits are described for step, pulse, and ramp
inputs, and the Elmore delay and the Elmore risetime are introduced as charac-
teristics of the frequency response. Transient responses of R-L-C circuits are
presented including applications to crosstalk on ground returns; delay, risetime,
overshoot, and frequency response are also discussed, and relationships are
established between the transient response and the Elmore delay and the Elmore
risetime,

The chapter also includes brief discussions of R-L circuits and pulse trans-
formers and concludes by a treatment of cascaded R-C and R-L-C circuits.
Transmission lines are not discussed, since they are the subject of Chapter 5.

2.1 RESISTORS

The simpiest linear component is the resistor,* shown in Figure 2.1a. When the
applied voltage Vg (measured in volts, V) and the resistance R (measured in
ohms, £2) are given, the current Iy (measured in amperes, A) can be found from

Ohin'’s law:

*Terms are introduced by italics.



4 LINEAR CIRCUITS

(a) b)

Figure 2.1 The resistor. (g) Symbol; (b) Ip versus Vg characteristic.

Ig=-2 @.1)

illustrated in Figure 2.15.
The power Py (measured in watts, W) dissipated in a resistor is

Pp = Vrig (2.2a)
which can be also written as
Pr =I%R, (2.26)
or as
Pp= .V—Rz- (2:20)
R

The resistance of a bar of material is given by

R=pt (2.3)
P 2.
where p is the resistivity (for copper p= 1.7 X 107® 2m), 1 is the length of the
bar in meters, and A is its cross-sectional area in square meters (m?).

Example 2.1 Calculate the resistance of 100 feet of #"20 copper wire.
The length is I = 100 feet =~ 30 m. The diameter is given by wire tables as
0.032in. = 0.81 mm =0.81 X 1073 m. Thus the cross-sectional area

A=0812%X 10°m? -}=0.52 X 10°5m?.

Hence

{ 30m
R=p==17X10"* Qm ——— o =1.048.
Py LT R0 M e 0o



2.2 CAPACITORS 5

{a) (b)

Figure 2.2 The capacitor. (@) Symbol; (b) Q versus ¥ characteristic.

2.2 CAPACITORS

A capacitor (Figure 2.2q) is capable of storing charge. For a given voltage V¢
and capacitance C (measured in farads, F: 1 farad = 1 second/ohm), the stored
charge Q (measured in coulombs: 1 coulomb = 1 ampere X second) is given by

@=Cl¢ (2.4)

as illustrated in Figure 2.25. The stored charge is, h_owever, the accumulation
of current. Hence, when the current is /¢, in a time interval with a duration d¢
the charge changes by an amount dQ) given by

dQ = Ipdt; (2.5a)
also, the current I equals the rate of change of Q, which is dQ/dt:

‘Ic=%—?—. (2.58)

For a voltage change of dV, according to eq. (2.4), the charge changes by an
amount of

dQ=CdV.. (2.6)
Combination of eqs. (2.5b) and (2.6) leads to
dVep

= —X. 2.7

le=C—, 2.7

Example 2.2 A capacitor that has a capacitance of C = 0.5 farad is con-
nected to a current source that delivers the current I shown in the upper
graph of Figure 2.3. The charge Q of the capacitor and the voltage Ve
across it are shown in the lower graph for an arbitrarily chosen initial
charge of Q,-¢.= 0.25 coulomb. The quantities /i, Q, and V- are related
by egs. (2.4) through (2.7).
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Ic
Ampere
!
1.0
0.5 |
| | Second
—pn. ¢
4] 1 2 3
Q Ve
Couiomb Volt ‘L
15 30 [
1.0 20
0.5 10
1 [ | | Second,
] 1 2 3 4

Figure 2.3 Current I flowing into a capacitor with a capacitance of 0.5 farad (upper
graph), and the voltage Voand the charge @ of the capacitor with an arbitrary initial charge
of 0.25 coulomb (lower graph).

In Figure 2.3 the graph of the current flowing into the capacitor is com-
posed of constant-current segments. As a result, the charge accumulated in a
time interval during which the current is constant can be computed as the cur-
rent multiplied by the duration of the time interval. In general, the change of
charge is given by the area under- the graph of the current; the area is counted
negative when the current is negative.

Example 2.3 A current /o flowing into a capacitor and the resulting
charge are shown in Figure 2.4 where we assumed zero initial charge. The
area under the graph of the current during the time interval of 7 =0 to
t =2 seconds is given by the area of the triangle as /~¢/2; thus, for ex-
ample, ar't = 1 second the area is 0.5 ampere X 1 second/2=0.25 ampere X
second = 0.25 coulomb, as shown in the graph of Q. The charge can be
found in a similar manner at any time between ¢ =0 and ¢ = 2 seconds.
Between ¢ = 2 seconds and ¢ = 3 seconds /=0, hence Q remains un-
changed. Between times t = 3 seconds and ¢ = 5 seconds I = -1 ampere,
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thus Q changes linearly. The charge accumulated- during this interval is
d@ = -1 ampere X (5 seconds - 3 seconds) = -2 coulombs resulting in a
change from the Q=1 coulomb at £ =3 seconds to Q =-1 coulomb at
t = 5 seconds.

Between ¢ = 5 seconds and ¢ = 6 seconds /. = 0, thus Q remains - 1
coulomb. Between f = 6 seconds and, for example, t = 7 seconds the
change of charge is given by the area of the trapezoid: (7 seconds- 6
seconds) X (1 ampere + 0.5 ampere)/2 = 0.75 coulomb. By adding this
to the -1 coulomb charge that is present at ¢ = 6 seconds, we get a ¢ =
-0.25 coulomb at ¢ = 7 seconds. The charge can be similarly found at any
time between £ = 6 seconds and 7 = 8 seconds.

Note that Figure 2.4 does not assume any specific value of capacitance .
C, and the voltage V¢ across the capacitor is not given. However, once the
charge Q as function of time is determined, the voltage as function of time
can be found by use of eq. (2.4) as ¥V = Q/C. '

The charge Q in Figure 2.4 is computed as the area under the graph of I
by use of formulae for the areas of the triangle and the trapezoid. This pro-
cedure is applicable whenever sich a formula is available for the given current

Ic
1

1.0 |- :
N
oL L 11 | 1

1 2 3| 4 [5 6 7 8 Second

Ampere

Coulomb
o |
-
-
-
i

—05 —

_1_0 L
Figure 2.4 Currentllc flowing into a capacitor (upper gragh) and the charge Q of the
capacitor with zero initial charge (lower graph).
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shape. When this is not the case the area can still be found by counting the num-
ber of squares under the graph of /- plotted on a graph paper with a square grid.t

Thus far we assumed that the current I as function of time was given, and
we sought charge Q and voltage V- as functious of time. When the opposite
holds, cutrent I can be found as the rate of -hrnge of charge Q.

Example 2.4 In the lower graph of Figure 2.3, between ¢ = | second and
t = 2.5 seconds the charge changes by dQ = 1.3 coulomb - 0.85 coulomb =
0.45 coulomb. According to eq. (2.5b), the current is given as the change
in charge, dQ, divided by the duration of the time interval which is dt =
2.5 seconds - 1 second = 1.5 second. Thus, I =dQ/dt = 0.45 coulomb/
1.5 second = 0.3 ampere, in agreement with the upper graph of Figure
2.3. '

In general, the rate of change ar any time r can be found as the slope of the
tangent drawn to the graph of Q at time 7—in agreement with Figure 2.4 ¥

A capacitor can not dissipate power, however, it can store energy. The
energy E (measured in joules, J: 1 joule = | watt X second) stored in a capacitor
with a capacitance of C is given as

E=1cv3 | (2.8a)
or as ‘ ’
E=10v,. (2.85)

The capacitance of two parallel plates that have opposing areas of 4 each
and that are separated by a distance d can be approximated as

A
C=¢gpe, 4 29)

In eq. (2.9), €, = 8.85 X 10¢* farad/m, ¢, is the relative dielectric constant (¢, =
1 in vacuum or in air); it is also assumed that each dimension of A is much larger
than 4.

Example 2.5 Calculate the capacitance between two opposing dimes
spaced d = 0.1 in. = 2,54 mm apart in air. The diameter of a dime is 0.7
in.=17.5 mm = 1.75 X 1072m. The area is tous (1.75 X 107 m)® X n/4 =
2.4X 10™*m?. The capacitance

TThis is, in fact, a graphical integration. In general, the charge 2 = CV is given by the
integral f J¢» df and graphical (or numerical) integration can be avoided whenever f I dt is
available from a table of integrals. .

1A'nalytically, the current is given by the derivatives I = dQ/dt = C dV/dt.
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A F 24X 10™m?
C= =8, X 0-12 -
e g =88 X0 S X 10°m

© =0.84 X 107" F = 0.84 pF (picofarad).

2.3 INDUCTORS

An inductor (Figure 2.5a) is capable of storing magnetic flux. For a given
current /;, and inductance L (measured in henrys, H: 1 henry = 1 ohm X second),
the stored flux, & (measured in webers: 1 weber = 1 volt X second) is given by

&=Ll (2.10)

as illustrated in Figure 2.5b. When the voltage across the inductor is V¥, in a
time interval with a duration of dt its flux changes by an amount d® given as

d® =V, dt; (2.11a)
also, the voltage ¥ equals the rate of change of the flux, which is d®/dt:
dod
Vi=—. d1b
L=, (2.118)

For a current change of dij , according to eq. (2.10), the flux changes by
an amount of

do=Ldl,. (2.12)
Combination of eqs. (2.115) and (2.12) leads to
g
Vy=L o (2.13)

An inductor can not dissipate power, but it can store energy. The energy £
stored in an inductor with an inductance of L is given as

———— [ ]
: J
VLT é”
> I
[ NS

(a) b)
Figure 2.5 The inductor. (@) Symbol; (b) ® versus iy, characteristic.



