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In recent years the scientific community has witnessed the birth and initial
development of a new paradigm for understanding complicated and seemingly
unpredictable behavior. This new paradigm goes by the name of CAgos, re-
ferring to a scientific philosophy, an approach, and a set of methods to deal
with manifestations of chaos in the physical sciences. To a large extent the
enthusiasm that has developed for Chaos is the result of the breadth of its
applications. These applications of Chaos for understanding complex and
unpredictable behavior range acrosg the spectrum of scientific disciplines. In-
deed, Chaos has much the same flavor as classical thermodynamics in that the
fundamental ideas and results seem applicable to a wide variety of different
physical systems. There is probably no physical nystem exhibiting unpre-
dictable behavior that is not presently being scrutinized through the lens of
Chaos by someone.

Despite widespread interest and broad application, Chaos is a young sci-
ence and as a consequence, the traditional examples are fewer and the stan-
dardization of methods is less well developed. With its roots in many areas
of scientific inquiry, only in recent years have the examples and methods been
welded into a new structure. In this textbook I have tried to introduce Chaos
by presenting those topics and examples that seem to have risen to the top
and become standard fare. However, for reasons of length choices must be
made and the topics selected certainly reflect my own preferences. But I have
tried to represent what most people in the community seem to feel are the im-
portant topics. Naturally, not all would agree on every point, and I would not
expect anyone to agree with all of the selections or with the depth to which
I have discussed them. Nevertheless, I believe that most of the “classical”
topics in Chaos are represented.

To eliminate from the beginning any false expectations, I mention some
topics that are not discussed: quantum chaos, noisy chaos, symbolic dynam-
ics, and many, many examples of chaos occurring in specific physical systems.
First and foremost, the book is intended to be useful as a textbook in a
one-semester course taught in a physics department for seniors or first-year
graduate students, and 1 have used this material for such a course. The audi-
ence, however, has'not consisted only, or even primarily, of physics students.
Certain topics and chapters require decidedly more background than others.

vii |



PREFACE

Chapter 8 on conserwative dynamics expects the reader to be familiar with
Hamiltonian dynamics. Sectiolis 5.5 and 9.2 use some basic mathematical
tools from differential geometry. However, the vast majority of the presenta-
tion depends only on some familiarity with differential equations and linear
vector spaces. Even the reader with a limited knowledge of Hamiltonian dy-
namics or certain mathematical tools should be able to follow the presentation
with only rarely a feeling of unfamiliarity.

The absolutely essential prerequiste the author expects the reader to
bring to a study of this book is a willingness to do considerable numerical
experimentation. The programming and numerical skills required for most of
the examples are minimal, but a great deal of insight comes from personally
performing numerical experiments on some of the classical problems in Chaos.
Personal computers are adequate for doing everything in this book but, of
course, may not suffice for tackling research problems in Chaos.

I wish to express my personal gratitude to colleagues who have fueled my
interest by giving me copies of articles from diverse places and by generally en-
couraging me in this writing project. Particularly, I thank G. Mason, G. Hart,
R. Shirts and E. Rauchle. I thank H. Stokes for frequent suggestions on TgX
formatting and T. Knudsen for help in preparation of the manuscript. I espe-
cially thank my colleague and friend Ross Spencer for reading the manuscript
and making literally hundreds of suggestions. The book is significantly better
than it would otherwise be as a result of his help.

My deepest thanks go to my family since a considerable portion of the
time necessary to complete this work has been taken from hours that rightfully
belonged to them. The completion of this project would not have been possible
without the love and support of my wife and children.

S. Neil Rasband
Provo, Utah
July 1989
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CHAPTER ONE =

INTRODUCTION

There are more things in heaven and earth,
Horatio, than are dreamt of in your philoso-
phy.

(W. Shakespeare, Hamlet, Act I, Scene §)

Arguably the most broad based revolution in the worldview of science in the
twentieth century will be associated with chaotic dynamics. Yes, I know about
Quantum Mechanics and Relativity, and for physicists and philosophers these
theories must rank above Chaos for their impact on the way we view the
world. My assertion, however, refers to science in general, not just to physics.
Leaving improved diagnostic instrumentation aside, it is not clear that Quan-
tum Mechanics or Relativity have had any appreciable effect whatever on
medicine, biology, or geology. Yet chaotic dynamics is having an important
impact in all of these fields, as well as many others, including chemistry and
physies.

Surely part of the reason for this broad application is that chaotic dy-
namics is not something that is part of a specific physical model, limited in
its applivation to one small area of science. But rather chaotic dynamics is
a consequence of mathematics itself and hence appears in a broad range of
physical systems. Thus, although the mathematical representations of these
physical systems can be very different, they often share common properties.
In this introductory chapter we outline in a qualitative way some of the com-
mon features of chaos and introduce the reader to some chaotic phenomena.
We further introduce some of the methods employed in the study of chaotic
dynamics. Precision is left to discussions in subsequent chapters.

1.1 Chaos and Nonlinearity

The very use of the word “chaos” implies some observation of a system,
perhaps through some measurement, and that these observations or easure-
ments vary unpredictably. We often say observations are chaotic when there
is no discernable regularity or order. We may refer to spatial patterns as
chaotic if they appear to have less symmetry than other, more ordered states.
In more technical terms we would say that the correlation in observations
separated by either space or time appears to be limited. However, from the

1



2 INTRODUCTION

outset we must make clear that we are not speaking of the observation of
random events, such as the flipping of a coin. Chaotic dynamics refers to
deterministic development with chaotic outcome. Another way to say this is
that from moment to moment the system is evolving in a deterministic way,
. i.e., the current state of a system depends on the previous state in a rigidly
determined way. This is in contrast to a random system where the present
observation has no causal connection to the previous one. The outcome of
one coin toss does not depend in any way on the previous one. A system ex-
hibiting chaotic dynamics evolves in a deterministic way, but measurements
made on the system do not allow the prediction of the state of the system
even moderately far into the future.

Whenever dynamical chaos is found, it is accompanied by nonlinearity.
Nonlinearity in a system simply means that the measured values of the proper-
ties of a system in a later state depend in a complicated way on the measured
values in an earlier state. By complicated we mean something other than
Just proportional to, differing by a constant, or some combination of these
two. Although by these remarks, we do not mean to imply that somewhat
complicated phenomena cannot be modeled by linear relations.

A simple, nonlinear, mathematical example would be for the observable
Z in the (n + 1)th state to depend on the square of the observable z in the
nth state, i.e., zn41 = z2. Such relations are termed mappings, and this is a
simple example of a nonlinear map of the nth state to the (n+ 1)th state. A
familier physical example would be the temperature from one moment to the
next as water is brought to a boil. At the end of this process the temperature
in the (n + 1)th state is just equal to the temperature in the nth state, but
this is clearly not true as the water is being heated to its boiling temperature.
Frequently the problem of modeling real-world systems with mathematical
equations begins with a linear model. But when finer details or more accurate
results are desired, additional nonlinear terms must be added.

Naturally, an uncountable variety of nonlinear relations is possible, de-
pending perhaps on a multitude of parameters. These nonlinear relations
are frequently encountered in the form of difference equations, mappings, dif-
ferential equations, partial differential equations, integral equations, or even
sometimes combinations of these. As we look deeper into specific causes of
chaos, we shall see that chaos is not possible without nonlinearity. Nonlinear
relations are not sufficient for chaos, but some form of nonlinearity is necessary
for chaotic dynamics.

Having considered briefly nonlinear mappings, we now consider somewhat
more closely systems modeled by differential equations. It is convenient when
discussing the properties of differential €quations to write them in a standard,
first-order form:

x = f(x,1). ' (1.1)

If the f in (1.1) is independent of ¢, then the equation is said to be autonomous;
otherwise it is nonautonomous. For such a system to be chaotic it must have



1.2 The Kicked Harmonic Oscillator 3

more than one degree of freedom, or be nonautonomous. We illustrate this
with the familiar example of a simple pendulum. The differential equation for
a simple pendulum is often written in the form

i+wisinz =0, (1.2)

where x represents the angular displacement of the pendulum from the vertical
position, two overdots denote two derivatives with respect to time in the usual
way, and wo denotes the natural frequency of the pendulum for small angular
displacements. Even though this system is highly nonlinear, it does not exhibit
chaotic dynamics. There is only the single degree of freedom associated with z
and the right-hand side is the constant zero. If, instead, we replaced the zero
in (1.2) with some function f(z,t), then the system becomes nonautonomous
and may exhibit chaotic dynamics, depending of course, on the exact nature
of the fuiiction f(z,t). In effect the time ¢ has become an additional degree
of freedom.

To put the differential equation (1.2) in the standard form (1.1) and to
make explicit the notion that time is a degree of freedom, we define a new
independent variable 8, and a new dependent variable y = dz/df. Then with
the driving term f(z,t) on the right, (1.2) becomes the system

dr dy N
=Y 2 = —wisinz + f(z,1),

dt
FT i 1.
In this form the system consists of three, first-order differential equations and
is nonautonomous. Frequently, such a system is said to have 1% degrees of
freedom, since very often dynamical systems, particularly those resulting from
Hamiltonian mechanics, have a pair of equations for every degree of freedom.
Although simple quadratic maps and forced, nonlinear oscillators like the
preceeding examples may not appear to offer much promise for displaying a
rich diversity of chaos, the opposite is true. We will see that indeed within
these very simple nonlinearities lurk the seed of nearly all chaotic phenomena,
and the bulk of this work is devoted to the study of such simple systems.
One of our major objectives is to classify and characterize deterministic
systems exhibiting chaotic dynamics. Thus our characterization of nonlinear-
ity as an essential ingredient for chaotic dynamics marks the beginning of this
classification effort. We have further pointed out that for a system with one
degree of freedom the differential equation must be nonautonomous. We now
iliustrate these points and the development of chaos with the familiar example
of a simple harmonic oscillator.

1.2 The Kicked Harmonic Oscillator

To introduce many of the concepts and ideas that will be studied in subse-
quent chapters, we study the motion of a simple harmonic oscillator subject to
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FIG]:ch;E 1.1 Sample phase-plane trajectories for the simple harmonic oscillator with-
out kicks.

a periodic impulse. We refer to this system as the kicked harmonic oscillator.
The equation of this system is given by ,

i+wgz=Af(z)i6(t—nT), (1.3)

n=1

where wp is the natural frequency of the oscillator, A4 is the amplitude of
the kicks, and f(z) is an arbitrary function of z, but not of ¢. Figure 1.1
shows the familiar phase-plane trajectories for the case where 4 = 0, i.e., the
harmonic oscillator without kicks. Each ellipse corresponds to a fixed value of
the energy of the oscillator. With A # 0, the right-hand side of (1.3) depends
on time ¢; this differential equation is therefore nonautonomous.

In an interval between kicks the right-hand side of (1.3) is zero, and the
solution is familiar;

z(t) = Ay coswol + By sinwyt, (k~1)T <t < kT, (1.4)

and.
z(t) = ~wo Ay sinwot + wo By cos wot, (1.5)
where k = 1,2,... . For each k, at t = kT we demand that the position of the

one-dimensional oscillator be continuous but that the velocity (momentum)
change discontinuously. This discontinuous change in the velocity is computed
by integrating (1.3) from (kT — ¢) to (KT + €) and then taking the limit as
€ — 0. We find easily the following relationship between the coefficients in
the k interval and those in the (k + 1) interval.

Aigr = Ay — wﬁ f(zs) sinwokT, (18
(¢}
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FIGURE 1.2 A section of a phase-space trajectory for a linear kicked harmonic oscil- ‘
lator. The discontinuous jumps in i are a result of the kicks.

A
Biyr = By + u—f(x;,)coswokT, 1.7
‘0

where
Ty = Ag coswokT + By sinwokT, (1.8)

zr = —woAr sinwokT + woBg coswokT.

The subscript k on z and & refer to a tirhe infinitesimally prior to the kick at
ET. Using (1.8) with (1.6) and (1.7), plus a little algebra, yields the relation

(J:;,.H) _ ( coswoT wo'lsinon> ( £ ) (1.9)
ik-{-l T\ —wosinwoT coswoT Zr + Af(z;,) ! ’
which gives the position and velocity just before the time (k+ 1)T in terms
of the position and velocity just before the time kT

The relationship between the coefficients in the k interval to those in the
(k + 1) interval is an example of a two-dimensional mapping. Choosing the
driving term in (1.3) to be a sum of delta functions is the feature that allows
us to obtain the solution to the differential equation for the kicked harmonic
oscillator in terms of the mapping represented by (1.9). The nonlinearities are
introduced by the choice made for f(z). With A and f(z) not equal to zero,
the system is nonautonomous and thus equivalent to more than one degree of
freedom.

For f(z) = 1 or z, the mapping (1.9) is linear and invertible. In light
of our previous remarks, no chaotic dynamics is to be expected. Such a case
is, however, still nonautonomous — just not nonlinear. A plot of a segment
of a phase-space trajectory for f(z) = 1 is given in Fig. 1.2. The trajectory
crossings are a consequence of the time dependent driving term but can be

“eliminated by plotting the trajectory in extended phase space as in Fig. 1.3.
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FIGURE 1.3 A sketch of a possible tra;ectory in extended pha.se space for the kicked
htnmw’lr‘ufr oscillator. The kicks, and tly d >us jumps in the velocity, occur
at t=T,2T.. N

From (1.6) and (1.7) with f = 1 we obtain immediately

4 k=l
Ap=A; - — Z sin(2mnwo /),

- (1.10)

A
By =B; + oo Z cos(2wnwe /),

nx1

with £ = 2,3,... and Q = 2x/T. If wg = Q, i.e., if the kicks come at
a frequency equal to the natural frequency of the oscillator, the coefficient
By — oo with k. The velocity and hence the energy of the oscillator become
unbounded. This situation is called resonance. Resonance is & phenomenon
occurring in a great many nonlinear systems leading to the destruction of the
integrable behavior. The issue of resonance will reappear often in subsequent
sections as we consider dynamics of nonlinear systems.
For wg # Q the series in (1.10) can be summed to give

Ar=A+ 51; sin wk(‘%’) [cos xk (‘:’Qﬂ) — cot ,(‘39_) sin xk (%’-)]

By =By + f;[sinrk(%)-) [smrk( ) ) + cohr( ‘.:) coswk( )] - l]
(1.11)
If the ratio (wo/f) is a rational number, then there will always exist some k
for which A; and Bj; return to their inital values, and the system is periodic.
As an alternative to a trajectory plot in extended phase space, which
becomes impractical after a few periods, it is convenient to study the time
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FIGURE 1.4 Poincaré Section plot for a kicked harmonic oscillator but with the driving
term independent of z.

evolution of this system by making a point in the (z,£) phase plane at the
values of t = T, 2T,,. .., i.e., at values of t corresponding to multiples of the
period of the driving function. Such a plot for a dynamic system is called a
Poincaré section. Figure 1.4 is a Poincaré section plot for the system repre-
sented by (1.10), (1.11) and we see that the phase points always lie on ellipses,
just as for the oscillator without kicks. »

Comparing an orbit in Fig. 1.1 with the orbit in Fig. 1.2 dramatically
demonstrates that a linear, time-dependent driving term alters the orbits in
phase space. But this change in the nature of the phase-space orbits still does
not go so far as to produce any chaotic dynamics. The relation between the
(Ax, Bi) and (Ai41, Be+1) is still linear in (1.10) and (1.11). Nonlinearity is
still absent in the system producing Fig. 1.4. Exercise 1.3 considers the same
issues with f(z) = =.

We now change from f(z) = 1 to f(z) = z* and examine the Poincaré
section plots for orbits with initial conditions similar to those producing the
plots of Fig. 1.4. The Poincaré sections now produce Fig. 1.5, which is quite
different from Fig. 1.4. We see two highly distorted elliptical orbits, an inner
and an outer one, enclosing a seven-period island chain. Around the outer
edge of this island chain there is a small, but finite, layer of chaotic orbits.
The centers of the islands are called O points and the points between, joining
the individual “islands,” are called hyperbolic or X points. The insert in the
center of Fig. 1.5 shows a magnified view of the intersection points of a single
orbit in the neighborhood of the indicated X point. The reader should bear
in mind that the insert only shows one of the seven X points, all of which are
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FIGURE 1.5  Poincaré section plot for a kicked harmonic oscillator with a dependence
of the form z* in the drive. The intersection points of a single trajectory produce the points
forming the island chain. The same is true for the outer closed curve, the inner closed curve,
and the chaotic region magnified in the insert.

connected by a thin chaotic layer around the island structure. The chaotic
region occupies a small but finite region in the phase plane. One of the most
characteristic features of chaotic dynamics can be seen by considering two
trajectories in the chaotic region that have nearly identical initial conditions.
After a finite number of iterations of the map, the intersection point for one
trajectory is completely unrelated to the intersection point for the second
trajectory. This is our first example of chaotic behavior from deterministic
dynamics. This feature is commonly referred to as sensitive dependence on
initial conditions. Despite sensitive dependence on initial conditions and nu-
merical roundoff, Hammel et al. (1988) have shown that the computation of
chaotic orbits for a large number of periods as in Fig. 1.5 is still meaningful.
"These few examples, and the kicked harmonic oscillator in particular,
have illustrated the necessity for nonlinearity in producing chaotic dynamics.
.We further illustrated how Poincaré sections can be a useful tool in displaying
chaotic consequences. For the kicked harmonic oscillator it was possible to
obtain a mapping to advance the system in time, and it should be clear that
this is much easier than the numerical integration of a system of differential
equations. Partly because maps are easier to advance, and partly because of
the importance of Poincaré section maps, considerable attention is devoted
to mappings in subsequent chapters. This begins in the next chapter with a
study of one-dimensional maps where we also develop additional methods to
supplement Poincaré plots for studying and recognizing chaotic behavior.
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1.3 Examples

The following is a selected list of some situtations where chaotic dynamics is
manifest or appears to play a role. '

1. Turbulence is believed to be the classic example of a system evolving
deterministically, yet exhibiting chaotic behavior. Transistions to turbu-
lence in Couette flow have been studied by Swinney and Gollub (1978),
Swinney (1983, 1985), and Brandstater and Swinney (1987).

2. Thermal convection in fluids, called Rayleigh-Bernard convection, pro-
vides another example of transistion to turbulence. This has been one
of the most fruitful applications experimentally and theoretically. It was
in this system that chaotic dynamics was first appreciated theoretically
with the work of Lorenz (1963). The Lorenz model is of such impor-
tance historically, and there has been so much work done on it, that the
Lorenz equations have become one of the important examples for chaotic
dynamics. Experimentally, it was careful measurements on liquid helium
confined in a cell heated from below that led to stunning experimental
confirmation of some of the predictions of chaotic dynamics by Libchaber
and Maurer (1978). The Lorenz equations are considered in Chapter 6.

3. Supersonic panel flutter, important for supersonic aircraft and rockets,
was studied by Kobayashi (1962).

4. Some chemical reactions, and in particular the Belousof-Zhabotinsky re-
action, exhibit chaotic dynamics as discussed by Roux (1983) and Epstein
(1983).

5. Optically bistable laser cavities have been studied by Ikeda et al. (1980)
and Gibbs et al. (1981). Atmanspacher and Scheingraber (1986) have
investigated several measures of chaos in a continuous-wave dye laser.

6. Cardiac dysrhythmias, or abnormal cardiac rhythms, have been discussed
by Glass et al. (1983). In addition to the dynamics of the heart, its very
structure has several manifestations of self-similar geometrical structures
called fractals. Fractal structures are commonly the result of nonlinear
dynamics, and, although the dynamics governing growth and develop-
ment of the heart are unknown, fractal structures are detailed in the
vascular network for the heart. Furthermore the cardiac impulse itself is
transmitted to the ventricles via an irregular fractal network. Many such
fractal structures in physiology are reviewed by West and Goldberger _.
(1987). ’ '

7. There are many examples of nonlinear electrical circuits that exhibit
chaotic dynamics. One famous example that has for many decades pro-
vided a model for nondinear vibrations is the oscillator described by Van
der Pol and Van der Mark (1927). Nonlinear circuits have provided ana-
log devices for modeling many of the nonlinear equations discovered in
one context or another.
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8. Ecology and biological population dynamics provide a simple and instruc-
tive example of a dynamical system exhibiting chaotic dynamics. This
example comes to us under the name of the “logistic equation.” This
equation may describe the variations in nonoverlapping biological pop-
ulations from one year to the next. This equation and its importance
were pointed out in an early review by May (1976). We study this classic
example in the next two chapters.

9. Vibrations of buckled elastic systems have provided experimental exam-
ples of double-well potential systems. These systems have been studied
experimentally and theoretically by Moon and Holmes (1979, 1980) and
Holmes and Whitley (1983) as realizations of Duffing’s equation, whict
is also one of the classical systems studied in nonlinear oscillations.

10. Chaotic dynamo models have been proposed for representing the geomag-
netic field reversals and have been studied by Cook and Roberts (1970).
A review has been given by Bullard (1978). We study this example in
detail in Chapter 6.

11. Several types of standard chaotic behavior have been observed in simple
plasma systems and reported in Cheung and Wong (1987) and Cheung
et al. (1988).

12. A number of simple experiments suitable for classroom demonstration of
chaos have been described by Briggs (1987). ,

13. Several researchers have claimed that EEG data suggests that chaotic
neural activity plays a role in the processing of information by the brain.
See Harth (1983), Nicolis (1984), and Skarda and Freeman (198 .

14. By constructing a special computer for the single purpose of stud ying the
stability of planetary orbits over long time scales Sussman and Wisdom
(reported by Lewin, 1988) have found the orbit of Pluto to be chaotic on
a time scale of about 20 million years.

This selected list of examples illustrates the broad range of scientific
investigation that has been affected by studies in chaotic dynamics. I offer to
the reader the personal challenge to find some previously unmentioned system
in nature exhibiting chaotic behavior. Chaos can make life interesting in many
ways.

Exercises

1.1 Consider a kicked rotor with its dynamics modeled by the equation

6+ =Af(9) 3 8(t - nT),

n=1
»

where ¢ is the angle of the rotor, measured from some fiducial point, and
7 is the damping constant (Schuster, 1984). If ¢n(t) is the solution for



