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PREFACE

This volume is a supplement to Calculus, 2nd edition; Single Variable Calculus,
2nd edition; and Multivariable Calculus, 2nd edition, by Leonard Holder, James
DeFranza. and Jay Pasachoff, published by Brooks/Cole. It contains appendices
for all three texts as well as a chapter on graphing calculators. Answers to the
exercises in the appendices are also included.

Appendices | and 2 provide a concise review of algebra and trigonometry.
Appendix 3 contains a more detailed treatment of the conic sections than is
contained in the texts. These appendices can be referred to as needed, or they
can be assigned as an integral part of the course. Appendix 4 on mathemati-
cal induction and the Binomial Theorem is referred to in the texts in various
proofs and exercises. Appendix 5 contains some of the more difficult proofs of
theorems in the texts. Appendix 6. on vectors in two and three dimensions, is
a chapter reproduced from Calculus and Multivariable Calculus for the conve-
nience of instructors covering vector operations in the first two semesters of the
course.

The chapter on graphing calculators parallels selected parts of the first ten
chapters of the texts. It explains how best to use graphing calculators or graphing
software to visualize the appropriate calculus topics. Thanks are due to David
Royster for his contribution of this important material.
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PRECALCULUS REVIEW: ALGEBRA

Al.1 THE REAL LINE

4 -3 2 .10

FIGURE A1.1

The real number line

Since calculus is based on the real number system, we devote this section to
a review of the most important properties of real numbers. We denote the set
of all real numbers by R. An important subset of R is the set of all rational
numbers. These are numbers that can be expressed as the ratio of two integers—
that is, in the form m/n. where m and n are integers. with n # 0. This includes
the integers themselves, since an integer m can be written as m/1. The real
numbers that are not rational are called irrational. Some examples are /2, 7,
and V7.

The decimal representations of rational numbers are either terminating, such
as 5/4 = 1.25. or repeating. such as 5/3 = 1.666... or 9/11 = 0.272727 .. ..
All other decimal quantities represent irrational numbers. For example,
1.010010001. . . is neither terminating nor repeating and so is an irrational num-
ber. Similarly. the decimal expansion of 7 is 3.14159..., which neither termi-
nates nor repeats.

One convenient way to visualize real numbers is by associating them with
points on a line. By selecting points that correspond to 0 and I, we establish
both a scale and a direction on the line. The point corresponding to O is called
the origin. Points that correspond to other integers can be determined as shown
in Figure Al.1. All other real numbers can be made to correspond to points
on this line. The remarkable thing about this correspondence is that not only
does every real number correspond to a point on the line, but also every point
on the line corresponds to one and only one real number. We say there is a
one-to-one correspondence between the points and the real numbers. Because
of this identification, we frequently do not distinguish between a real number
and the point that corresponds to it. So we might say, for example, “the point
2" rather than “the point corresponding to the number 2.” When a line has
been coordinatized in the manner indicated, we call it the real number line, or
simply the real line.
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We assume that you are familiar with the usual arithmetic properties of real
numbers having to do with addition and multiplication. We list these properties
here.

Addition and Multiplication Properties of R

The following properties hold true for all real numbers a, b, and c.

1. Commutative properties a+b=b+a
ab = ba

2. Associative properties a+b+c)=(@+b)+c
a(bc) = (ab)c

3. Distributive property a(b+c)=ab+ac

4. Identity elements a+0=a
a-l=a

The number 0 is the additive identity for R and the number 1 is the
multiplicative identity for R.

5. Inverses For every a in R, there is a number —a in R, called the
additive inverse of a, such that a + (—a) = 0. For every a # 0 in
R. there is a number ¢~ in R, called the multiplicative inverse of a,
suchthata-a ' =1.

Recall that subtraction and division are defined in terms of addition and
multiplication by

a—b=a+(~b) and %:aw” ifb#0

Note carefully that the quotient a/b is not defined if » = 0 since ™' is not
defined. Thus, division by 0 is excluded.

Inequalities

We concentrate now on the order properties of R. If a and b are real numbers
such that b —a is positive, then we say a is less than b and write a < b. Thus,

a < b means b — a is positive.

When a < b, we may also say b is greater than a and write b > 4. The
symbol a < b is shorthand for a < b or a = b, and similarly for b > a. On the
real line with positive direction to the right, if @ < b, then a is to the left of b
on the line. The following properties of inequality can be proved by using the
definition of inequality and the addition and multiplication properties of R.
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Properties of Inequality

Ifa<b thena+c<b+c.
ac<bc ifc>0
Ifa<b’menlac>bc ifc <0

Ifa<band b <c, thena < c.

Ifa<bandab>0,thenal>%.

N

Pay particular attention to Property 2 when ¢ < 0. In effect. this property says
that multiplying both sides of an inequality by a negative number reverses the
sense of the inequality.

In the two examples that follow, we illustrate ways to “solve” linear and
quadratic inequalities. To solve an inequality means to find the set of all real
numbers x for which the inequality is satisfied.

EXAMPLE A1.1 Solve the inequality
3—x
4

X
I
<3

Solution To eliminate fractions, we multiply both sides by the lowest com-
mon denominator, 12. Then we proceed by using the inequality properties
shown:

9-3x <4x —12 Propery 2
-7x < =21 Property |
x>3 Property 2

Note that in the last step we multiplied both sides by the negative number —%

and therefore had to reverse the sense of the inequality. u

A set is frequently designated by a symbol of the form
15 g |

where a description of properties possessed by x follows the colon. As an
illustration, in Example Al.1 we could write the solution set as {x : x > 3}.
This symbol is read as “the set of all x such that x is greater than 3.” In
such designations we will understand x to be a real number unless otherwise
specified.

EXAMPLE A1.2 Solve the inequality x(x — 1) < 2.

Solution We begin just as if this inequality were a quadratic equation, using
Inequality Property 1 to bring all terms to one side, and then factoring:

x2—-x-2<0

x—=2)(x+1) <0

The product on the left equals 0 when x = 2 or when x = —1. It is less than 0
when the factors (x —2) and (x + 1) are of opposite signs. A convenient way to
see where the product changes sign is to mark the points x =2 and x = —1 on

a real number line as in Figure A1.2. Then we test the product (x — 2)(x + 1)
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for its sign in each of the three regions determined by these points. Because
the product is of constant sign in each region. it is sufficient to test the sign
at just one point in each region. For example, we could use x = -2, x = 0,
and x = 3 as test values. The signs of the product are readily seen to be those
shown above the regions in the figure. We can now write the answer as

(x:—-1<x<2} n

Figure A1.2 is an example of what we refer to as a sign graph. Here is
another example illustrating the use of such a sign graph to solve a nonlinear
inequality.

EXAMPLE A1.3 Solve the inequality
x(x +5)
—_ >
x+1

3

Solution First we add - 3 to both sides and then combine in a single fraction,
getting
2+ 2x ~3
x4+ 1
Now we factor the numerator and make a sign graph:

(x+3)(x~1)
—_— >0
x+1
The points of division on the sign graph are points where either the numerator
or the denominator is 0. The sign in each region is determined using a test
value, with the results as shown in Figure Al.3. We can see that the solution
consists of the points in either of the sets

>0 Verity.

{v: =3 <x<-1} or {x x> 1} n

Note carefully that in this example we did nor clear the inequality of the frac-
tions. since doing so would have involved multiplying by the factor x + 1.
whose sign is sometimes positive and sometimes negative. so it would not be
clear which part of Inequality Property 2 to use. Instead. we brought all the
terms together as a single fraction and then tested the signs of the factors on
numerator and denominator. just as we did for a product in Example A1.2.

The solution given in Example A1.3 can be indicated more briefly by using
the following standard set notation. Let A and B denote two sets. Then the
union of A and B, written A U B, is defined as

AU B = {all elements in either A or B}
So the solution in Example A1.3 can be written
{v:-3<x<-1}U{x:x>1}

It is also sometimes convenient to use the notation for the intersection of
two sets A and B, written A N B and defined as

AN B = {all elements in both A and B)

The symbol ¥ is used to denote the empty set. If AN B = ¥, we say A and B
are disjoint.
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Interval Notation

Sets like those in the solutions to the preceding inequalities occur in many other
contexts as well; we give them the following special names and symbols:

Set Name Symbol
{via<x<bh) Closed interval {a, b}
{via <x < b} Open interval (a.b)

A set of the form {x : ¢ < x < b} is designated (a. b] and is said to be a half-
open (or half-closed) interval. The same is true for {x 1a <x <b}=lu.b).
It is also convenient to introduce the symbol oc, read infinity and interpreted
roughly as meaning “beyond all bound.” Although oo is ot a number, we use
it in interval notation as follows:

[x :x>a} = Ja.x)
fr:x>a} = (a.00)
[x:x <a} = (~20.4]
{x:v<a}l = (-0, a)

R = (~00.00)

Absolute Value

The absolute value of a number means the “magnitude” of the number, without
regard to its sign. More precisely, the absolute value of a real number «, denoted
by |al. is defined as

a ifa>0

lal = —a ifa<0

So la| is always nonnegative (that is. either positive or zero). For example,
2] =2 and |-2| = —(=2) = 2. Geometrically. |a| is the distance between a
and O on the real line. Similarly. for any two real numbers a and b, |a — b| is
the distance between them on the real line.

Distance between a and b = [a — b|

The basic properties of absolute value are given here.

Properties of Absolute Value

1. |a| > O for all real numbers a. Furthermore. la] = 0 if and only if
a=1(.

2. |—a]=lal

3. lab| = |ajlb)

4. la+b| <la|+|b|




The first three properties can be seen to be true directly from the definition.
Property 4 is called the triangle inequality and can be proved as follows. Since
the absolute value of a number equals either the number or its negative, we have
—la| £ a < |a|, and similarly, —|b| < b < |b|. Adding corresponding members
gives

—(al+1b)) <a+b < |a| + |b]
Thus, (a + b) < |a| + |b| and —(a + b) < |a| + |b|. It now follows that
la + b| < |a] + |b|, since |a + b| is either (a + b) or its negative.

From the geometric interpretation of absolute value as the distance from a
to 0, we can readily see that for a > 0,

l¥] < a if and only if —a<x<a

and
|x] > a if and only if X>aorx < -—a

Figure Al1.4 illustrates these relationships. They can also be verified by using
the definition of absolute value. In interval notation, we see that the set of real
numbers x that satisfy |x| < a is the open interval (—a, a), and the x values
that satisfy |x| > a are those in one or the other of the intervals (—00, —a) or
(a, o0)—that is, in (—o00, —a) U (a. 00).

EXAMPLE A1.4 Solve the inequality 2 {3 — 4x| — 1 > 7.

6  Appendix 1 Precalculus Review: Algebra
Ixl<a
~-a 0 a
(a)
kl>a
-a 0 a
(b)
FIGURE A1.4

Solution  Simplifying by using Inequality Properties 1 and 2, we get
|3 —4x| > 4, which is satisfied if and only if

3—4x>4 or 3-4x <—4
Solving each of these linear inequalities, we get
—4x > 1 —4x <=7

1 7

X < —— X > ~

The solution set can thus be written as

(=) :

The Completeness Axiom

We conclude this section with a brief discussion of one of the fundamental
properties of the real number system that has to do with the order relation. A
subset S of R is said to be bounded above if there exists a real number M such
that x < M for all x in S. When this inequality is true for all x in S, M is
said to be an upper bound of S. Thus M is an upper bound of § if, on the
real line, no element of § is to the right of M. Clearly, if M is an upper bound
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of §, any number to the right of M is also an upper bound of §. The more
critical question is whether there is an upper bound of § smaller than all other
upper bounds. If so, this upper bound is called the least upper bound of S. To
illustrate, the set

L}

is bounded above by 3. or 4. or 10. for example, but the /east upper bound is
2, since 2 is an upper bound and nothing less than 2 will do.

A fundamental property of R is that for every nonempty subset of R that is
bounded above, such a least upper bound in R does always exist. This property
of R is known as the completeness axiom.

The Completeness Axiom

Every nonempty set of real numbers that is bounded above has a least
upper bound in R.

EXAMPLE A1.5 Determine the least upper bound of each of the following
sets.

(@ {x:-1<x<3)

®d) {x: -1 <x <3}

(¢) {1 —1/n:n a positive integer}
d) {x:x?<2)

Solution

(a) An upper bound is 3, and since no number less than 3 is an upper bound,
we conclude that 3 is the least upper bound.

(b) Again, 3 is an upper bound, and although 3 is not in the set, elements of the
set come arbitrarily close to 3. So nothing less than 3 is an upper bound.
For example, 2.99 is not an upper bound, since 2.999 is in the set and
exceeds 2.99. Thus, 3 is the least upper bound.

(¢) Some elements of the set are

I — [ -

3
3

]—%:O ]—%:

19—
Wl
1]
dafr—

found by setting n = 1, 2, 3, 4. respectively. Since every member of the
set is less than 1, it follows that 1 is an upper bound. In fact, it is the least
upper bound, since by taking n large enough, we can make | — ,1, as close
to 1 as we wish. Nothing less than 1 is an upper bound to this set.

(d) Some upper bounds to the set are 3. 2, 1.5, 1.42, and 1.415, since the
square of each of these numbers exceeds 2. (Check this.) In fact, the
least upper bound is v/2, whose decimal expansion is neither repeating nor
terminating. This example shows, incidentally, that the rational numbers
are not complete because the set of all rational numbers whose squares are
less than 2, although bounded above, does not have a rational least upper
bound. ]
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Exercise Set Al.1

1. Express each of the following rational numbers as either
a terminating or a repeating decimal.

5 b) 8
(a) 3 ( 3
10 9
o d) — =
() 77 (d) 3
(e) 10
23
2. State which of the following are rational and which are
not. /i
81
(@) —— (b) -2
4
() V5 (d) V=8
(e) : + 2
© 273

3. Let x = 1.242424 .. .. By considering 100x — x, express
x in the form m/n in lowest terms.

4. Use the idea of Exercise 3 to write x = 0.243243243 . ..
in the form m/n in lowest terms.

5. Replace the question mark with the correct inequality

symbol.

(a) —1072 (b)y =779

(c) E ? j (d) 3.67 E
39 4

(e) 0?7 -100

gl

Write each of the following sets in interval notation and
show it on the real line.
(@) (x:—1<x<2)
(c) (x:2<ux <5}

(b) {x :x <2)
d) {x:0<x<1)

7. Write the meaning of each of the following intervals
using set notation, and show it on the real line.

(a) 12,5] (b) (-2.3]
(¢) (3,5) (d) (~20,2)
(e) 10, 00)
8. Give the value of each of the following.
(a) [-6] (b) 10}
(c) 13— m| (d) la—b| ifb>a

@) |-x| ifxr <0

In Exercises 9-32, solve the inequality.

3 Sx 1
9. 4-2x < 6—3x 0. 2> _ 1
2 47 6 3
Ix -2 5 —3x
1. 0< 2 <2 12. -3 < Y6

13, {3~ 2x|>2 14. 3x -5/ <2
{1—x|
18, 2{2x - 1] -3 <35 16. 3 <2
17. x> —3x—4<90 18. 2x° —9x +4>0
19. x2x-3) <5 20. 3x7 > 4(1 — x)
3—x x
21. 5 55 < 0 22. >0
X742 x+4

23 Qx~-Dx+He=-3H=>0

29, (x - Dx+2D(x -4 <0

3 2 -3
P AL 26 77 <y

v—2 x—1

X244 X —3r—4
. T 8. LM77 g

xr—3 Xr-4+x—6

29. |x — 3] < 0.01 30. 2x + 4] < 0.001
M. 0<|x—~a| <8 2. v —Ll<e

In Exercises 33-35, show the set on the real line and give its
least upper bound.

33. (a) {x:x < 3)
by {x:|jx =2 < 1}

34. @ [-3.7]
®) (5.0

2n — 1

35. (a) { ——— :n a positive integer
n

) {—1.-4. -1}

36. Prove Inequality Property 1.

37. Prove Inequality Property 2. (Hint: Use the fact that
the product of two positive numbers is positive. Also, if
¢ <. then —¢ > 0.)

38. Prove Inequality Property 3. (Hint: Use the fact that the
sum of two positive numbers is positive.)

39. Show that if « > 0. then (1/a) > 0. (Hint: Show (1/a)
cannot be negative or (.)

40. Prove Inequality Property 4. (Hint: Use Exercise 39.)
41. Prove Absolute Value Property 2.
42. Prove Absolute Value Property 3.

43. Prove that {a — b| < ja| + |b).
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44. Prove that ||a| — |b]] < |a — b|. (Hint: Write the triangle x € Sand (i) if L < M, there is an x in S such that
inequality as |x + y| < |x| + |y|. First substitute x = a x> L.
and y = b —a. Starting again with the triangle inequality,

45.

substitute x = b and y =a — b.)

46. Formulate a definition of a lower bound and the greatest

Prove that if S is a set of real numbers that is bounded lower bound of a set S that is bounded below. Give
above, then M is the least upper bound of S provided the conditions analogous to those in Exercise 45 that ensure
following two conditions are satisfied: (i) x < M for all that m is the greatest lower bound of S.

A1.2 THE CARTESIAN PLANE

Consider two real number lines perpendicular to each other so that their origins
coincide, as in Figure A1.5. We name the horizontal line the z-axis and the
vertical line the y-axis, and we call their point of intersection the origin. These
axes divide the plane into four quadrants. which we number as in the figure.
Through any point in the plane we pass vertical and horizontal lines. Their
intersections with the axes determine the z-coordinate, or abscissa, and the
y-coordinate, or ordinate, of the point. If the abscissa is @ and the ordinate
18 b, we represent the point by the ordered pair (a.b). The context will make
clear whether (a, b) refers to a point in the plane or to an open interval on the
line. The numbers a and b are called the coordinates of the point. For brevity,
we often say the point has coordinates (a. b). For example, in Figure A1.5 the
point P has coordinates (3, 2), and the point Q has coordinates (—4, —3).

Ya
Il 4+ I
3+
24— — — - - — _,P(3.2)
|
I+ i
t
e e S R >
-4 -3 -2 -1 9 o 3 g «
[ -1y
|
| 24
[
oo -3¢
Q(-4.-3)
u ~4 v
FIGURE A1.5

Conversely, if we are given an ordered pair of real numbers (a, b), we can
locate the unique point that has these coordinates from the intersection of a
vertical line through a on the x-axis and a horizontal line through b on the y-
axis. In this way we obtain a one-to-one correspondence between points in the
plane and ordered pairs of numbers. Frequently we do not distinguish between
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Py(xs0y,)

0

FIGURE A1.6

a point and its coordinates. saying. for example. “the point (3, 2)” rather than
“the point with coordinates (3. 2).”

What we have described is referred to as a rectangular, or Cartesian, coor-
dinate system. The latter name is for the French mathematician and philosopher
René Descartes (1596-1650). who is usually given credit for originating analytic
geometry, which is based on representing ordered pairs as points in the plane.
Actually, many of the ideas were first introduced by another French mathemati-
cian, Pierre de Fermat (1601-1665). The plane, when coordinatized as we have
shown. is often referred to as the Cartesian plane.

The Distance Formula

If we are given two points P, and P, in the plane with the coordinates (x;, v;)
and (x>.¥>). as shown in Figure A1.6. we can find the distance ¢ between
them by using the Pythagorean Theorem. which says that in a right triangle
the square of the length of the hypotenuse equals the sum of the squares of
the lengths of the legs. We introduce the point Q as shown, with coordinates
(x2.¥1). Then P QP is a right triangle. and since Py Q is horizontal, its length
is [x2 — xy]. Similarly. Q P> is vertical. and its length is |v> — v||. Thus, by the
Pythagorean Theorem,

d? =l — x4y = n

Equivalently. since |a|? = a’, we have the following formula.

The Distance Formula

d=y(x3—x)2+ (2 — )2

For example. the distance between (1. ~2) and (-4, 7) is

d= V(I +4)2+(=2-7)2 =25 +81 = V106

Notice that it does not matter which point is labeled (x,. v1) and which is
labeled (x,. va).

Graphs of Equations

The real power of the coordinate system devised by Descartes and Fermat is in
representing equations, which are algebraic objects, by means of collections of
points in the plane. which are geometric objects. If an equation involves only
two variables x and v, then the set of points in the Cartesian plane corresponding
to all ordered pairs (x.y) for which x and y satisfy the equation is called
the graph of the equation. For example. if we wish to graph the equation
v = 2x — 1. we can find several ordered pairs (x.y) satisfying the equation,
such as (0, —1). (1. 1). (2. 3). and so on. Then we can locate these as points
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in the Cartesian plane and (going on faith) connect them with a smooth curve
(which in this case is a straight line). This method of plotting points clearly has
its drawbacks, even if we plot a very large number of points. How can we be
sure, for example, that they should be connected with a single, unbroken curve?
Calculus provides the necessary tools for analyzing curves so that questions such
as this one can be answered. Even without calculus, analyzing certain curves
helps us determine their equations; conversely, we can sometimes recognize the
graph from the equation. For now, we do this analysis for only three particularly
simple, but very useful curves: the straight line, the circle, and the parabola.

The Straight Line

Consider a nonvertical line /, as shown in Figure A1.7, and let P; and P; be
any two distinct points on / with coordinates (x;, y;) and (xa, y2), respectively.
Then we define the slope m of | by

Y2— )N

m=-—-—

X2 — X|
You should convince yourself, using similar triangles, that the value of the slope
is independent of which two points on { we use.

Lines that go upward to the right have positive slopes, and those that go
downward to the right have negative slopes, as we can see from the definition.
Also, the slope of a horizontal line is 0, and the slope of a vertical line is not
defined. Figure A1.8 illustrates these facts.

Negative slope Zero slope Slope undefined
Y4 g 3 g

N

0 0 AN 0 i 0 5
(@ ) © @

FIGURE A1.8

Suppose we know one point, say P;(x;, y;), on a nonvertical line / and that
its slope m is given (or can be found). A point P(x, y) distinct from P; will
lie on [ if and only if the slope as calculated using P, and P equals m:

Y—-nn
X — X

If we clear this equation of fractions, we can write the equation of the line as

The Point-Slope Form
Y=y =mx—xy) (AL.1)

Note that in this form, the equation is satisfied even if P = P,. Thus, the point
P(x, y) lies on [ if and only if its coordinates satisfy Equation Al.1. The graph



