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Preface

Since 1947, numerical analysis has enjoyed dedicated effort from mathema-
ticians (both pure and applied), computer scientists, engineers and the likg,
all striving to devise and analyse processes aimed at being of use and vakig
in the solution of the problems of the outside world. One of the topic areas
of numerical analysis in which this effort has led to rich rewards'is that of
computational linear algebra. Our understanding of matrix problems is much
more complete than that of almost any other subset of numerical analysis.
We have powerful algorithms for solving linear equations, and for tackling
nearly all the commonly occurring eigenproblems. More important perhaps
is the existence of reliable and robust computer routines for these algorithms.
Much of this knowledge is contained in the monumental work by Wilkinson
(The Algebraic Eigenvalue Problem, O.U.P., 1965). The rest is in the more
recent literature.

The topics, numerical solution of linear systems, and numerical solution
of matrix eigenproblems, are fundamental to courses in numerical analysis.
Therefore, the availability of suitable textbooks for such courses is desirable.
For the first topic, the book by Forsythe and Moler (Computer Solution of
Linear Systems, Prentice Hall, 1967) is very suitable. Its style of short, single
topic chapters is one which should appeal to lecturers and students alike.
The present text is an attempt to provide a similar book for the second topic.

The content is based on lectures given by the authors to M.Sc. students at
the University of Dundee. Some of the material has also been used in under-
graduate courses at”the same University. All these students would have
attended a basic course in matrix algebra and be familiar with the fundamental
concepts, for example the definitions of matrix multiplication, inversion and
determinants. This book is written for students with such a background. The
material is suitable for courses to students both in mathematical disciplines
and in the more applied subjects such as engineering, and, because of the
particular format in which the material is presented, it could form the basis
for any level of course in its subject matter. Each chapter could be covered
in one or two lectures, and thus the whole text could be suitable for a course
of some fifteen to twenty lectures (including an allocation of time for con-
sideration of some of the relevant chapters in the book by Forsythe and
Moler).

The subjects have been chosen so as to present only the more commonly
used and more reliable techniques for computing solutions to eigenproblems.

vii



vili Preface

The aim is primarily to describe the techniques; therefore little will be said
of the error analysis of each method, although the conclusions to be drawn
from the relevant error analyses will of course be stressed. It is hoped that any
student whose interest may be roused by the material covered here will turn
to the book by Wilkinson for the ‘complete story’.

Many colleagues and friends have contributed to the development of this
book, particularly in the early stages of preparation. One of the authors
(ARG) is especially grateful to Dr. J. L1. Morris for his helpful criticism of
first drafts of several of the chapters, to Professor D. S. Jones not only for the
initial encouragement to undertake the preparation of this text but also for
arranging the rescue of a foundering manuscript, and to his co-author (GAW)
for effecting the rescue.

Both authors wish to express their thanks to Professor D. S. Jones for his
advice and comments throughout the preparation of the manuscript, and
to Mrs. Hilary Watson and Miss Frances Duncan for the expert typing of the
manuscript.

A. R. GOURLAY
G. A. WaTsoN
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A

introduction

1,1 Introduction

"The aim of this book is tc provide an elementary text on the numerical
techniques used in the solution of the algebraic eigenproblem

AX = Ax

where A is a known n xn matrix. The scalar A is referred to variously as
cigenvalue, latent root, characteristic value of the matrix 4 and the n column
vector X as an eigenvector, latent vector, characteristic vector of 4. The
purpose of this introductory chapter is to provide some examples of the
occurrence of such problems in a wide variety of areas of application. Certain
standard definitions and conventions of notation are assumed, and the reader
vnfamiliar with these should refer to Chapter 2, which contains a collection
of the standard notations and more useful results (to this text). Each of the
feliowing sections is intended to be self-contained and independent.

1.2 A geometrical example

The equation of an ellipsoid in n space dimensions is given, in cartesian
form, by

n n ”
Y Y ayziz+ Y, bizg+c’ =0,
=1

1= j=1

where z = (z), 22, . . ., z4)T is a point in # dimensional space. Using matrix
notation this may be compactly written as

32T A2 +bTz2+¢' = 0,

where ¢’ is a known constant, b is a known vector and 4 a known symmetric
positive definite matrix. By a suitable translation of axes

z=x-—A"1,
the equation may be simplified to
ixTAx+c =0,

1



2 Computational methods for matrix eigenproblems

If the position vector of a point x on this hyperellipsoid is the same as the
gradient vector at x, then x is a principal axis of the hyperellipsoid. Thus the
set of principal axes are those directions which simultaneously correspond to a
position vector and to a gradient vector. A two-dimensional example will
help to clarify this. (Here the two components of x are denoted by x and y.)

y

FIGURE 1

In Figure 1 the curve
ax2+2bxy+cy = d

is drawn. At a general point (x, y), the gradient is in the direction
(ax+by, bx+cy).

A.t thc.e particular point (x, y) in Figure 1 the gradient vector is in the same
direction as the position vector from the origin. It follows that at this point
(x, y) (and at any similar points) there exists some scalar A, such that

ax+by = Ax

bx+cy = Ay,

RN

From this equation we deduce that the principal axes are given by the eigen-
vectors of the matrix

a b

b el

or in matrix notation

———
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Returning to our n dimensional example we observe that the gradient

vector is given by
g = Ax.

Thus the principal axes are given by the n (non-trivial) vectors x satisfying
Ax = Xx, '

that is by the n eigenvectors of A.

1.3 Small vibrations

An area which is a fruitful source of eigenproblems is the study of the
vibrations of dynamical, and structural systems. The example given below
considers the small vibrations of particles on a string under tension. Simplify-
ing assumptions have been made to ensure that the analysis dées not become
too complicated. Thus we assume a uniform weightless string, no gravity and
that the vibrations are small and in a direction perpendicular to the rest
position of the string. We consider specifically the motion of four unequal,
but equally spaced, particles on a string under tension F. The system is shown
in Figure 2.

FIGURE 2

Making the standard assumptions, the equations for this system are given by

2 _
my g—xl = —F£+F(x2 x;)

A de2 h h
ma = () (45
m g = =F (5) £ (55)
m.it%‘:x,“—,‘3 = +F(x3;x4)— i‘hi

Definirig tne-vector x = (x1, X2, X3, x4) and letting

- mgh

a —F.‘v Hi=],2,3,4,



4 Computational methods for matrix eigenproblems
this system may be written in matrix notation as

:‘%‘ = Tx (1)

where D is the diagonal matrix
di 0 o0 0

0 0 0 d

-2 1 0 o0
1 -2 1 0
0 1 -2 1
0 0 1 -2

When the system vibrates in a normal mode the equation

—_ = —
i wex 0]
holds. (In this situation the masses all vibrate in phase or in direct opposition.)
Substituting (2) in (1), we obtain the eigenproblem

Dwix = —Tx 3)

for the normal frequencies wy, . . ., ws and the corresponding normal modes.

Although this would appear at first sight to be a generglized eigenproblem
of the form

(A-AB)x = 0,
it may easily be transformed into the standard symmetric tridiagonal problem
D-13TD-V2y = —y2y

where y = DU/3x, since the elements of D are positive.

This model may easily be extended to the general case of n particles on a
string, leading to an n dimensional analogue of (3). The matrix T is still
tridiagonal. In fact, it is a special matrix which occurs frequently in numerical
analysis, and whose eigenvalues are expressible in analytic terms.



Pl

Introduction 5
1.4 An example in information system design

If we regard an information (both storage and retrieval) system as made up
of component subsystems which operate together and perform a set of

" operations to accomplish the defined purpose of the system, then the aims

in the design of such a system may be stated as:

(i) to define the purpose of the system
(i) to select the component subsystems to achieve this purpose in an
optimal way. v

In the following analysis of this problem, we shall see that the eigenvectors
of a particular matrix play an important role. We begin with a few definitions
used in the model.

A job is defined to be the purpose of the system and it is composed of a set
of operations Oy, . . ., Om together with a volume (or work load) V1,..., Vm
for each operation. A component is a well-defined means of performing some
parts of these operations. The efficiency with which a given component
performs the execution of a given operation is measured as a function of cost,
time and size of the operation. For example, a typical choice would be

ct

e=_"

n

where c is the cost in pounds per unit time, ¢ is the time taken and n is a
measure of the size of the operation (e.g. bits processed). A fotal system
constructed from a set of components (S, .. ., Sa) in order to achieve all
the required operations is represented by an nxm efficiency matrix E with
the (i, j) element eq;, where for example,

_ Cijly
- s

(£7]
nyy

is the efficiency with which the ith component performs operation O;.

Since the above system is designed to perform a specified job made up of
the operations together with a volume for each operation, the cost of this
system performing the job is

X = Ey,

where
X = (X1, X2, ..., Xxn)T
v= (vb U2, ..., vm)r.

The system and its performance are thus given by E, v and x. We require



6 Computational methods for matrix eigenproblems

some measure of the performance of the system on various tasks, defined by
different volume vectors v. One measure is the Rayleigh quotient

= (EV)T (Ev).
vIy

The design of a general or total system involves the calculation of the
maximum cost of the system, and the maximum of the above measure is
given by the largest eigenvalue of ETE. Further, the corresponding value of v
giving the critical volume at which this maximum is achieved is given by the
corresponding eigenvector of ETE.

Further details of this area of application can be found, for example, in
the book by Becker and Hayes (1967).

1.5 An eigenproblem in non-linear optimization

A basic problem in non-linear optimization is the-determination of the n
dimensional vector x which minimizes the scalar function f(x) = f(x1, . . ., Xn).
Assuming that we are able to calculate the gradient of f(x), denoted by
g(x), then we may use a member of the class of variable metric methods.
These algorithms assume an initial guess or estimate xo of the solution and
calculate a sequence of new points {X;} by means of a relation of the form

Xk+1 = Xp+1xde
where d; is a direction vector and # is a positive scalar chosen to minimize
S(xx+ tde)

with respect to f—a univariate minimization problem. The variable metric
methods are characterized by the use of a direction vector of the form

dc = — Higk

where g: = g(xx) and Hy is a symmetric positive definite matrix. It is beyond
the scope of this section to explain in detail the theory of such algorithms.
At each step a new approximate matrix Hy,; is computed by a relation of
the form
Hpyn = Hy+Ex, Ho=1

In practice, it is essential to ensure that the sequence of matrices {Hx} remains
positive definite. Whilst the correction Ey is usually chosen so that Hesy will
bé positive definite if Hy is positive definite, the presence of rounding errors
may cause Hi41 to become indefinite. J. Greenstadt has suggested a means of
ensuring positive definiteness which involves a complete eigenanalysis of
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Hiqr. I {X¥*1} and {uf*'} are the eigenvalues and orthonormal eigenvectors
of Hg41 then, we may write

n
Hyiy = Z /\f+1“::+l{uf+l}a’.
=1
We now redefine Hi+1 to be

n
ch+1 = Z ,,\f+ll u:§+1{uf+l}1'

i=

which ensures that Hy+; is non-negative definite. If however any member of
the set {A} T} were zero then the safest strategy would be to define

Higyy = L

This suggestion of Greenstadt, whilst ensuring positive definiteness, un-
fortunately involves a considerable increase in the computational require-
ments of the algorithms. For this reason it is only feasible for problems with
small dimension n.

1.6 An example from mathematical economics

In the study of macroeconomics, one of the most useful tools available to
the planner is input-output analysis introduced by Leontief. The input-
output table or Leontief matrix links the individual industries to the overall
working of the economy. To introduce the concepts we follow the book of
Dernburg and Dernburg (1969).

Considering the sales-and purchases of an industrial sector, we denote by
by the sales of industry i to industry J, and by by the retention of goods
produced by industry i. The sales of goods produced by industry i to outside
users is denoted by y; and the gross output by x;. Thus

Xy = y¢+ Z by;. 4
3

The next step is to define the input coefficient. We assume that the sales of
industry i to industry j are in constant proportion (@) to the output of
industry j, thus

by = ayx;.

The quantities ay; are defined to be the input coefficients. From equation (4)
we see that in a static situation

- X = y+ AXx, &)
where
X = (xl, X2 000y xn)T,

y = ()'Iv Y2, ... s)’ﬂ)’r9
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and 4 is the nxi matrix with the (i, j) element agy. The matrix (/—A) is
known a3 the Leontief matrix. Equation (5) can be used to determine the
required :ross outputs x of the industry sector to meet a preset final demandy..

If supply and demand are not in equilibrium then we must replace equation
(3) by a dysamic model. The usual assumption is that the output in each
industry changes at a rate which is proportional to the difference between the
level of sales and the level of production. Thus our dynamic model takes the
form

P = D(A-D x()+3(0)) ©

where 0’ is a disgonal mateix of the reaction coefficients of the industries.
Equation {6) thus is a simple model of the dynamic behaviour of the economic
system we are considering. The question of the stability of the system being
modelled can now be «iswered, by determining the eigensystem of the matrix
D(A—1I) and thus considering the behaviour of the solutions to the system (6).
In particular, for this model the existence of eigenvalues with positive real
part would indicate an instability in the system because the required gross
output would grow exponentially with time.

A similar use of fie Leontief matrix and cigensystem analysis occurs in a
discrete dynamic system of the form

x(t+1)~x(1) = DiA~-T) x(8)+¥(1)).

Such models are of use in studying the stability of interindustry relations,
multiple markets and intercountry trade. For fuller details the reader is
referred to the text of Dernburg and Dernburg (1969).

1.7 A Sturm-Liouville problem ’

In the numerical analysis of ordinary and partial differential equations, a
commonly occurring problem is the determination of an approximating
eigensystem of the continuous problem. This may reprsesent the vibration of
bars, plates or structures, the oscillation of fluids, etc, Many of these problems
are now tackled by variational means using a technique frequently referred
to as a finite element or Rayleigh-Ritz method. Our example in this section is
a straightforward Rayleigh-Ritz attack on a Sturm-Liouville problem.
Our aim is to demonstrate the technique and the resulting eigenproblem in as
simple a manner as possible.

We therefore consider the problem of determining those values of A for
which there exists a non-trivial differentiable function é(x) on [a, b] which,
under suitable assumptions, satisfies the differential equation

(PX)F(X)) ~g(x)$(x) + Ar(x)p(x) = 0, 7
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the boundary conditions

Ha) =) =0, - ®

and the normalization condition
b : ’ iy
f r(x)$%(x) dx = 1. *
a

The functions p(x), ¢(x), r(x) satisfy p(x) >0, g(x) >0 and r{x)>0. The nexi
step in the analysis is to place a mesh on the interval [g, ] consisting of the
points

a=Xo<X1<X3<...<XnN31 = b.

Let M denote a subspace of functions defined on the mesh on the interval
[a, &]. For example, M might be chosen to be a spline subspace such that each
Yy€M is a cubic polynomial on each interval [x;, x;m1).j = 0,..., N and
such that &; has continuous second derivative 4t the points xy. Pracnca! con-
siderations regarding the choice of M and the basis functions i; are bevoad
the scope or intention of this example.

Returning to our Sturm-Liouville problem we cast our eigenproblem in
the form of a Rayleigh-Ritz minimization. Thus the solution to (7), (8) and (9)
is equivalent to finding the stationary values, and corresponding fanctions ‘¢
of the Rayleigh quotient s

za=|[ [p(¢)2+q¢21dx}/{ [[riras). T o)

In general, we cannot deal with (10) unless we make some simplifying assump-
tions. If we restrict our approximate solution ¢ to lie in the (usually finite)
subspace M then we may carry the analysis further. Thus Iettmg

;-‘!.

¢ = Z Cl'l'f(x)

where ¢; are constants to be determined, the problem reduces to that. of
detqm;xmng the. values of ¢ correspondmg to the statlonary values of (10)
For ease of wntmg we use the notation

i : ¢ - CT\P , s . Lo (11)
where St o S e T
c=(c,0...,07) DRt
$ =@, ..., )
If we substitute into (10) the assumption (11), then

Rlel = N{(c)/D{c},




