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Preface

The purpose of this book is to present, in as clear and concise a
form as possible, the fundamental principles underlying the gen-
eration, transmission, and reception of acoustic waves. The
extensive developments of the past few decades have so broadened
this field that an exhaustive treatment of all its aspects could not
be contained in any single volume, and it has therefore been neces-
sary to restrict the number of topics considered and to limit the
extent to which each is carried. In making this selection it has
been the primary ajm of the authors to familiarize the student
with the fundamental concepts and terminology of the subject,
"~ and with the analytical methods that are available for attacking

acoustical problems. The first nine chapters of the book provide
an analysis of the various types of vibration of solid bodies, and of
the propagation of sound waves through fluid media. These
nine chapters will suffice for a one-semester course in the funda-
mentals of theoretical acoustics, and may also be used for the first
semester of a full-year course in theoretical and applied acoustics.
The remaining seven chapters are concerned with a limited num-
ber of applications of acoustics. No attempt bas been made- to
cover all such applications, those discussed being selected either
beeause of their outstanding importance or as concrete illustra-
tions of the mathematical techniques developed in the earlier
chapters. Since each of these last seven chapters is anindepend-
ent, self-contained unit, an instructor presenting a two-semester
course may omit any one or more of these chapters and substitute
material from the more speclahzed textbooks of acoustics.

One factor that has been kept in mind in writing this book is
the close association that exists between acoustics and com-
munications engineering. Not only do nearly all modern
devices used in the generation and reception of acoustic waves
depend for their operation on a conversion of electrical into
acoustical energy, or vice versa, but the mathematical formu-
lation of many acoustical problems is also quite similar to that
employed in corresponding problems involving the transmission

- of alternating currents through lines or networks, In addition,
it has been found that the design and analysis of many acoustical
deviees is facilitated by converting their mechanical or acoustical
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properties, such as mass or pressure, into equivalent electrical
analogues, and then carrying through either a theoretical or an
experimental analysis of the resulting analogous electrical circuit.
In view of these factors, the mechanical and acoustical notation
employed has been chosen to emphasize the similarity between
these fields and to facilitate the conversion of results from one to
the other.

Although this book has been developed from notes used for
several years in a course given to graduate students in Engineer-
ing Electronics, it is not assumed that the reader is proficient in
the engineering aspects of electrical communications. The book
may be studied with equal facility by advanced undergraduate or
graduate students in either Physics or Engineering Electronics,
the essential requirements being a knowledge of the fundamental
principles of mechanics and electricity and an understanding of
the methods of calculus, including partial derivatives. Since
this book is intended primarily as a textbook for classroom use,
rather than a reference work, no attempt has been made to
include a complete bibliography, although occasional references
are given where the treatment is necessarily incomplete. The
authors have attempted to derive each important equation from
the fundamental laws of physics and to show in some detail not
only the mathematical steps but also the logical processes
involved in these derivations. The derivations of a few of the
less important equations have been intentionally omitted and are
instead included as exercises for the student among the problems
given at the end of each chapter. Considerable attention has
been paid to the selection of a comprehensive set of problems,
for the ultimate check on the student’s understanding of the
subject is his ability to apply his knowledge to new situations.
Tables of physical constants and functions are given in the
appendix. As far as possible, the proposed standards of acous-
tical terminology of the American Standards Association have
been used throughout this book, and a glossary of symbols is
incorporated in the appendix as a further aid in clarifying the
confusion that might result from the multiplicity of physical
quantities represented by certain of the more commonly used
symbols. Lawrence E. KINSLER

Avustin R. Frey

Annapolis, Md.
August, 1960
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CHAPTER

Simple Harmonic Motion

1.1 .Introduction. The whole study of acoustics is pri-
marily concerned with the generation, transmission, and recep-
tion of energy in the form of longitudinal waves in matter, and is
therefore a study of vibrations. As the atoms and molecules of a
solid or fluid are displaced from their normal configuration an
internal elastic force of stiffness arises. Typical examples of
such a force include the tensile force produced when a spring is
stretched, the pressure resulting from the compression of a fluid
into a reduced volume, and the shearing force that appears when
a shaft is twisted. It is the action of this restoring force of.
stiffness, coupled with the inertia of the system, that results
in oscillatory vibrations.

Many different types of vibration occur in the generation and
propagation of acoustic waves. In a narrow sense, their fre-
quency is limited to the range from about 20 cycles/sec to
15,000 cycles/sec, which produge the auditory sensation of sound
for the average person. However, in a broader sense they also
include the ultrasonic frequencies above 15,000 eycles/sec, which
. although inaudible have important practical applications in
numerous fields. The modes of vibration range from the simple
. sinusoidal sound waves produced in air by a mounted tuning
fork vibrating at its fundamental frequency, through the com-
plex ‘pattern of periodic waves generated by a bowed violin
string, to the nonperiodic waves associated with & noise or an
explosion. In studying such vibrations it is advisable to begin
with the simplest type, i.e., a sinusoidal vibration having only a
single frequency component. .

1



2 SIMPLE HARMONIC MOTION

1.2 Simple Oscillator. If a mass m, fastened to some sort
of spring and constrained to move back and forth in just one .
direction, is displaced from its central or rest position and is then. '
released, the mass will be observed to vibrate. Measurement -
shows that the frequency of vibration is constant, and that the
displacement of the mass from its rest position is a sinusoidal
function of time. Sinusoidal vibrations of this type are called
simple harmonic vibrations. It can be shown, both experi-
mentally and theoretically, that the mass will vibrate with simple
harmonic motion whenever the restoring force resulting from
the stiffness of the spring is directly proportional to the displace-
ment of the mass from its rest position. A very large number
of vibrators used in acoustics are of this type, or are approxi-
mately equivalent to it. Loaded tuning forks, and loudspeaker
diaphragms which are so constructed that at low frequencies
their mass moves as a unit and may be considered to be concen-
trated near their eenter, are but two examples. Even more
complex vibrating systems have many of the characteristics of
the simple system and may be studied to a first approximation by
being reduced to simple oscillators.

The only physical restriction placed upon the equations shortly
to be developed for the motion of a simple oscillator is that the
restoring force be directly proportional to the displacement.
Whenever the amplitude of vibration is sufficiently small so that
the elastic limit of the spring is not exceeded, the frequency of
vibration is independent of amplitude and the motion is simple -
harmonic, but this is not true if this limit is exceeded. A similar
restriction applies to more complex types of vibration,-such as
those eorresponding to the trapsmission of an acoustic wave
through a fluid medium. If the resulting acoustic pressures ate
so large that they are no longer proportional to the displacement
of the particles of the fluid, it becomes necessary to modify the
normal acoustic equations. With sounds of ordinary intensity
this is not necessary, for even the noise generated by a large
crowd at a football game rarely causes the amplitude of motion of
the air molecules to exceed one-tenth of a millimeter, which is
within the limit given above. The amplitude of the shock wave
generated by a large explosion is, however, well above this limit,
and hence the normal acoustic equations are not applicable.

Returning now to a consideration of the simple oscillator, such
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as that shown in Fig. 1.1, let us assume that the restoring force
" f can be expressed by the equation

= —sz ' (1.1)

where z ig the displacement of the mass m from its rest position,

s is the stiffness constant of the spring, and the minus sign indicates

that the force is directed

oppositely to the displace-
ment. Ifforcesareexpressed '

~ in dynes and displacements '&WM&L‘

in centimeters, then the con- —x

stant s, which is assumed to Fic. 1.1. Simple oscillator.

be the same for tension '

as for compression, has the dimensions of dynes per centimeter.

Substituting this expression for force into the general equation of

linear motion

f=-sx

d’z
dt?
and replacing the ratio of the two constants of the system, s/m,
by a new single constant wo?, we obtain
‘ d’z

T + wolx =0 (1.3)
This equation is an important second-order linear differential
equation whose solution is well known, and may be obtained by

several methods.
One method is to assume a solution of the type

f=m (1.2)

z = A% cos vi

Differentiation and substitution of this expression in equation
1.3 shows that it is a solution if we identify v with we. Further-
more, it may be similarly shown that

z = Ag sin woet

is also a solution. The complete general golution is the sum of
these two solutions, i.e.,

xr = A1 €08 wot + A2 sin (.oot (14)

where A, and A, are two arbitrary constants.
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1.3 Initial Conditions. The constants A; and A, are
determined by the manner in which the mass is started into
motion, i.e., by the #niltal conditions. If at the time ¢ = 0 the
mass has an initial displacement 2y and an initial velocity v,
then the arbitrary constants A; and A, are fixed by these initial
conditions, and the subsequent motion of the mass is completely
determined. A direct substitution into equation 1.4 of z = 29
at ¢ = 0 will show that A, equals the initial displacement z,.
Differentiation of equation 1.4 and substitution of the initial
velocity condition gives

Vp = —woAl gin 0 + woAz cos 0

’

®so that vo must equal wedz. Therefore A, = vo/wy, and equa-
tion 1.4 becomes

Vo .
T = 20 08 wot + — 8N wol (1.4a)
wo

Another form of equation 1.4 may be obtained by letting

Ay = A cos ¢ and Ay = —A sin ¢, where 4 and ¢ are two new
arbitrary constants. Substitution and simplification then gives
z = A cos (wot + ¢) ' (1.5)

where A is the amplitude of the motion and ¢ is the initial
phase angle of the motion. Also one may show that A and ¢
have their values determined by the usual initial conditions and
are : :

2\ % —
A= (x02 + 0—02) , and ¢ = tan™! SLUEE (1.5a)
wo wolo

1.4 Frequency of Vibration. The frequency of vibration
i8 determined by the value of the angular frequency constapt
wo. Since wo = 2ufo, where fo is the frequency of vibration in
cycles per second, then

wo 1 8
= — = — qf— 1.6
\ 7= o 2% N o ( )
It is to be noted that either decreasing the value of the stiffness
constant or increasing the mass of the oscillator results in a
decreased frequency. This mathematical deduction is in agree-
ment with what one would conclude from a logical consideration
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of the physics involved; ie., increasing mass or decreasing
stiffness would be expected to slow down the vibration. The
period, T, of one complete vibration is given by the reciprocal of
equation 1.6.

1.5 Series Method of Solution. An alternative method
of solving the original differential equation (1.8) is to assume a
power-series solution of the form

z=ao+ ait + axt® +ast® + - - -

Upon differentiating this expression twice with respect to ¢ and
substituting in equation 1.3 we obtain

2as + 6ast + 12d48% + - - -
+ wo®ao + wolait + wolagt? + - - - =0

Since this equation must hold for every value of ¢, the sums of
the coefficients of each power of ¢ must be separately equal to
zero. Applying this condition,

as = —w02a0/2 ag = —w02a1/6
as = —wolas/12 as = —wo’as/20

ete. Therefore the series that satisfies equation 1.3 is

242 4;4
wo t wg't
2 =ao(1 =5+ %)

aq wo3t3 w05t5
+wo (th 3! + 5' - )

The series multiplying the constant ag is the well-known series
expansion of cos wof, and sinfilarly the series multiplying the
constant a1/wo is the expansion of sin wef. The series solution is
therefore equivalent to

a1 .
Z = ag €08 wel + — sin wof
wo

which is of the same general form as equation 1.4.

1.6 Complex Exponential Method of Solution. A third
method of solving the original differential equation (1.3) is to
assume a solution of the form

z = Ae"
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This expression will satisfy the equation if y2 is set equal to —w?,
which is equivalent to ¥ = +jwe, where j = V-1 Letting
v equal both +4jwo and —jwe, the complete general solution may

be written ] )
xr = Angwnt + AzG_J”"t (17)

where A; and A, are constants to be determined from the ini-
tial conditions of motion, TUtilizing the well-known relations
between exponential and trigonometrie quantities, '

e/ = cos wot + 7 sin wot
and
7% = co8 wet — j sin wel

equation 1.7 may be reduced to
z = (A1 + As) cos wot + j(A1 — As) sin wet  (1.7a)

From physical considerations it is apparent that the displace-
ment of the mass must be a real quantity (not involving j), and
hence if Ay and As are chosen as real numbers this condition
requires that A; = A,. The solution then contains in effect
‘only a single arbitrary constant, 4; + 4, = 24, and is conse-
quently incomplete. To obtain the complete solution we must
assume that A; and A, are complex,! i.e.,

Ay =a1+jby and A; = as 4+ jbe

Wheré a1, 43, by, and by are real numbers. Then equation 1.7 may
be reduced to

z = (a1 + a2) cos wot — (b1 — bA sin wot
-+ ][(bl + bg) cos wol —|— (a1 —_ a2) sin wot] (1.7b)

and the displacement will be real at all values of £if the coefficients
of the trigonometric expressions in the imaginary term are zero,
ie., if by 4+ by = 0 and a; — az = 0. Under these conditions
A, and A, are complex conjugates, and equation 1.7b becomes

z = 2a1 c08 wol — 2by 8in wol (1.7¢)
which is identical in form with equation 1.4.

! In this book boldface type will be used to indicate complex quantities;
ttalic type will represent real quantities.
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In actual practice it is unnecessary to go through the mathe-
matical steps required to make the imaginary part of the general
golution vanish, for it is sufficient to adopt the convention that
the real part of the complex solution ts by itself a complele general
solution of the physical problem indicated by the original differ-
ential equation. 1t is self-evident that the real part of the above
complex solution (equation 1.7b) is a complete solution. Simi-
larly, the real part of either A6 or Age 7t is likewise a com-
plete solution.

It will be the general practice in this textbook to analyze
problems by the complex exponential method. The -chief
advantages of this procedure, as compared with the trigonometric
method of solution, are its greater mathematical simplicity and
the relative ease with which the phase relationships between the
various mechanical and acoustic variables can be determined.
In addition, many of the problems that arise in acoustics are
similar to those encountered in alternating-current electrical
theory, so that the results and techniques of electrical theory
may be used in solving acoustic problems. Whenever possible,
the notation used in this textbook is chosen to emphasize this
similarity. The chief disadvantage of the complex exponential
method is that the solutions obtained do not represent the frue
values of the various acoustic variables, and care must be taken
to obtain the real part of the complex solution in order to arrive
at the correct physical equation or numerical solution.

1.7 Physical Characteristics of Simple Harmonic Mo-
tion. Differentiation of equation 1.5 shows that the velocity is
given by )

dz

v = T = —wod sin (wof + o) (1.8)

and the acceleration by

d2
Acceleration = d_t:z = —wo?d cos (wet + ¢) = —wo’z (1.8a)

From these equations it will be seen that the displacement lags
90° or 7/2 radians behind the velocity and that the acceleration
is out of phase with the displacement by 180° or = radians, as
shown in Fig. 1.2.
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Consideration of the complex form of the equation representing
this type of motion leads to similar results. The expression
& may be thought of as a vector of unit length, rotating in a
counterclockwise direction in the complex plane with an angular
velocity wo. Similarly, any complex quantity A having the
components a and jb may be represented by Ae’®, a vector of
length A = (a? 4 )" making a phase angle ¢, whose tangent
is b/a, with the axis of reals. It can readily be shown that the
product of any. two complex quantities is then represented by a

Acceleration .
Dlspla(;ement * !/Velgmty

_‘\\4

Fic. 1.2. The velocity v always leads the displacement = by a time interval

corresponding to x/2 radians of phase-angle difference. Acceleration and

displacement are always = radians out of phase with each other. Plotted
curves correspond to ¢ = 0 and wy = 1,

vector whose length is the product of the lengths of the individual
vectors, and whose phase angle is the sum of their phase angles.
The expression Ae’* consequently is equivalent to Aef(o*t®
and represents a vector of length A and initial phase angle ¢,
rotating counterclockwise in the complex plane with the angular
velocity wg, Fig. 1.3. The real part of this rotating vector, i.e.,
its projection on the axis of reals, has the magnitude

A cos (wot + ¢)

and therefore varies with time in a simple harmonic manner.
The reader may similarly show that the real part of Ae~7“ also
varies in a simple harmonic manner. '
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If the displacement x is represented by the complex equation
x = A¢it

differentiation with respect to time gives v = jwex, and hence
the complex vector representing velocity leads that representing
displacement by j, i.e., by a phase angle of 90°. The projection
of this vector on the axis of reals then represents the instantane-
ous velocity of motion, the velocity amplitude being wed. A
further differentiation shows that the complex vector represent-
ing acceleration is out of

~

phase with the displacement J ~

. vector by —1, or 180°.
1.8 Energy ‘of Vibra-

P

2N

/\’\-Aejw"'

tion. The energy of a mass . \
oscillating with simple har- 7 \
monic motion of amplitude n N
A and angular frequency wo /‘/-r\—f
is the sum of the system’s -

potential energy E, and its -
kinetic energy E;. The [£L-—-""1e¢
potential energy is the work
done in distorting the spring
as the mass moves from
its position of static equi-
librium. Since the force
exerted by the mass on the spring is in the direction of the
displacement and equals -+ sz, the potential energy £, stored in
the gpring is

\
1% 4
\\‘
\
\

Jjb

a
r<—Acos (wgt + ¢)—>l
Fic. 1.3. Physical representation of a
rotating complex vector Ae"‘""

E, = ](; ST dx & _g-sa: = Fmuwg 222 (1.9

An alternative form of this equation may be obtained if the

value of z a8 given by equation 1. 5 is substituted in equatlon 1.9.
Then

E, = —%‘ano2A2 cos? (wol + ¢) (1.9a)
Using the usual expression for kinetic energy, we have
B, = 3mv? = $mw®A? sin® (it + ¢) (1.10)

The total energy E of the system at all times is therefore
E = Ep + Ek = 91-’”'1,(;)024‘12[(:082 (wot + ¢) + sin2 (wot + ¢)]
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or
E = tmwo®d? = s4? : (1.11)

so that the total energy is constant. Since the system was
assumed to be nondissipative, ie., to have no frictional losses,
this result is to be expected. The magnitude of the total energy
is seen to be equal to the potential energy (3s4?%), when the
mass has its greatest displacement, and is also equal to the kinetic
energy (3mwo?’4?) when the mass has its greatest velocity.
Expressed in terms of wp and 4, it is to be noted that E depends
on the product of the squares of these two quantities. This
e particular dependence of energy on frequency
and displacement amplitude recurs frequently in
acoustics, both for sound sources and sound
y waves. For instance, a specified acoustic output
may be obtained at high frequencies with an
amplitude of vibration of the sound source that is
“dy  small as compared to that required at low
frequencies.

1.9 Effect of Including Mass of Spring.
If the mass m, of the spring is not negligible as
compared with the mass m attached to the
spring, it is to be expected that this additional
m inertia of the system will result in a reduced
frequency of vibration. Let the length of the
Fre. 14. Ef-  ohring be I, and assume the velocity of any
fect of mass of . .

spring. element dy of the spring, Fig. 1.4, to be propor-

tional to its distance y from the fixed end of the

spring. Then the velocity of this element is given by »y/l, where

v is the velocity of the free end Of the spring to which the mass

is attached. The total kinetic energy of the spring can be

obtained by integrating the kinetic energy of a length dy, along
the entire spring. Then

1 2
Ej of spring = 4 ‘/; (% dy) (% v) = ¥mg?®

and hence the total kinetic energy of the system is given by

Ey, of system = 3 (m + %) v?
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Assuming that the stiffness constant s is measured with the
spring hanging in a vertical position, the potential energy (3sr?)
is the same as for a massless spring.

Since the system is nondissipative the total energy must be
constant. Therefore

E=3 (m + '1'”3—8) v* + }sz? = constant (1.12)

Setting » = dz/dl and differentiating with respect to time we
have ‘

mg\ dz )
(m + ‘3—) - + sz =0 (1.12(!)

as the differential equation representing the motion. Upon
comparing this equation with equation 1.3, it is evidently
equivalent if wo is now given by

(1:125)

g s
T mt (my/3)
When the mass of the spring is not negligible, the frequency of
vibration may therefore be determined by adding to the sus-
pended mass one-third of the mass of the spring.

1.10 Linear Combinations of Simple Harmeonic Vibra-
tions. In many important situations that arise in acousties the
motion of a body is a linear combination of the vibrations induced
separately by two or more simple harmonic motions. The
displacement of the body is then the algebraic sum of the indi-
vidual displacements. N

One important example is the combination of two such motions
having the same angular frequency w. Thus, if the two indi-
vidual displacements are given by

z1 = Ay cos (wt + ¢1) and z2 = Az cos (ol + ¢2)

then their linear combination along one direction is z = z; + .
By the use of the familiar trigonometric relations involving the
sums and differences of angles it is possible to convert this expres-
sion for the displacement into the more convenient form

= A cos (wi + ¢) . - (1.13)



