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preface

This book is intended to serve as an introduction to quantum physncs
In writing ic, I have kept several gmdclmes in mind.

1. First, it is helpful for the development of intuition in any new ﬁeld of
study to start with a base of detailed knowledge about simple systems. I have
therefore worked out a number of problems in great detail, so that the insight
thus obrained can be used for more complex systems.

2. Every aspect of quantum mechanics has been helpful in understandmg
some physical phenomenon. I have therefore laid great stress on applicatiohs at
every stage of the development of the subject. Although no area of quantum
physics is totally developed, my intention is to- bridge the gap between a
modern physics course and the more formal development of quantum mechanics.
Thus, many applications are’discussed, and I haye stressed order- of-magnitude
estimates and the importance of numbers.

3. In keeping with the level of the book, the mathematical structure has-
been kept as simple as possible. New concepts, such as operators, and new
mathematical tools necessarily make their appearance. I have dealc with the
former more by analogy than by precise definition, and 1 have minimized the
use of new tools insofar as possible.

In approaching quantum theory, I chose to start with wave mechanics and
the  Schrodinger equation. Although the state-vector approach gets at the
essential structure of quantum mechanics more rapidly, experience has shown
_ that the use of more familiar tools, such as differencial equations, makes the
theory more accessible and the correspondence with classical physics more
transparent.

The book probably contains a little more material than can comfortably be
covered in one year. The basic material can be covered in one academic quarter.

vii



viii - Preface

It consists of Chapters 1 to 6, 8, and 9, in which the motivation for a quantum
theory, the Schrédinger equation, and the general framework of wave mechanics
are covered. A number of simple problems are solved in Chapter 5, and their
relevance to physncal phenomena is discussed. The generalization to many
particles and to three dimensions is'developed. The second-quarter material deals
directly with atomic physics problems and uses somewhat more sophisticated
tools. Here we discuss operator methods (Chapter 7), angular momentum
(Chapter 11), the hydrogen atom (Chapter 12), opetators, matrices, and spin
(Chapter 14), the addition of angular momenta (Chapter 15), time-independent
perturbation theory (Chapter 16), and the real hydrogen atom (Chaprer 17).
This material prepares the student to cope with a large variety of problems that
are discussed during the third and Jast quarter. These problems include the inter-
action of charged particles with a magnetic field (Chapter 13), the helium atom
(Chapter 18), problems in the radiation of atoms and related topics (Chapters 22
and 23), collision theory (Chaptcr 24), and the absorptnon of radiation in matter
(Chapter 25). This material'is supplemented by a more qualitative discussion of
the structure of atoms and molecules (Chapters 19 to'21). The last chapter on
elementary particles and theit symmetries serves the dual purpose of describing
some of the recent advances on that frontier of physics and of showing how the
basic ideas of quantum theoty have found apphcabxhty in the domain of very
short distances.

Several topics arise naturally as. digtessions in the develoPment of the
subject matter. Instead of lengthening some long chapters, I have placed this -
material in a separate "Special Topics™ section. There, relativistic kinematics,
the equivalence principle, the WKB approximation, a detailed treatment of
lifetimes, line widths and scatteting resonances, and the Yukawa theory of
nuclear forces are discussed. For the same reason, a brief introduction to the
Fourier integral, the Dirac delta function, and some formal material dealing
with operators have been placed in mathcmaudal appendnces at the end of the
book. u
I 'am indebted to my colleagues at the University of Minnesota, especially
Benjamin Bayman and Donald Geffen, for many discussions on the subject of
quantum mechanics. I am grateful to Eugen Merzbacher, who read the manu-,
script and made many. helpful suggestions for improvements. I also thank my
students in the introductory quantum mechanics course that I taught for several
years. Their evident interest in the subject led me to the writing of the supple-
mental notes’ that. later became this book.

| Ssephen Gasiorowicz
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chapter 1

" The Limits of Classical Physics

The end of the nineteenth century and the beginning of the twentieth
withessed a crisis in physics. A series of experimental results required concepts
totally incompatible with classical physics. The development of these concepts,
in a fascinating interplay of radical conjectures and brilliant experiments, led
finally to the quantum theory.! Our objective in this chapter is to describe the
' backgroung! of this crisis-and, armed with hindsight, to expase the new concepts
in a manner that, while not historically correct, will make the transition to
quantum theory less mysterious for the reader. The new concepts, the: particle
properties of radiation, the wave properties of master, and the quantization of physical
quantisies will emerge in the phenomena discussed below.

A. Black Body Radiation

When a body is heated, it is seen to radiate. In equilibrium the light
emitted rangeés over the whole spectrum of frequencies v, with a spectral distri-
bution that depends both on the frequency or, equivalently, on the wavelength
of the light ), and on the temperature. One may define a quantity E(QA, T), the,
emissive power, as the energy emitted at wavelength N per unit area, per. unit

_ time. Theotetical tesearch in the field of thermal radiation began in 1859 with -
the wotk-of Kirchhoff, who showed that for 2 given A, the ratio of the emissive-
power E to the absorptivity A, defined as the fraction of incident radiation of
wavelength X that is absorbed by the body, is the same for all bodies. Kirchhoff
considered two emitting and absorbing parallel plates and showed from the

. equilibrium condition that the energy emitted was equal to the energy absorbed
(for each X), that the ratios E/A must be the same for the two plates. Soon

! An interesting account of the development of quantum theory may be found in
M. Jammer, The Conceprual Development of Quantum Mechanics, McGraw-Hill, New York,
1966. ) K

1
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2 Quantum Physics

thereafter, he observed that for a black body, defined as a surface that totally
absorbs all radiation that fails on it, so that A = 1, the function E(\, T) is a
universal function. '
In order to study this function it is necessary to obtain the best possible
source of black body radiation. A practical solution to this problem is to con-
sider the radiation emerging from a small hole in an enclosure heated to a tem-
 perature T. Given the imperfections in the surface of the inside of the cavity,

it is ‘clear that any radiation falling on the hole will have no chance of emerging
~ again. Thus the surface presented by the hole is very nearly “totally absorbing,”
‘and’consequently the radiation coming from it is indeed “'black body radiation.”
Provided the hole is small enough, this radiation will be the same as that which
falls on the walls of the cavity. It is therefore necessary to understand the distri-
bution of radiation inside a cavity whose walls are at a temperature 7.

Kirchhoff showed that the second law of thermodynamics requires that
the radiation in the cavity be isotropic, that is, that the flux be independent of
direction; that it be homogeneous, that is, the same at all points; and that it be
the same in all cavities at the same temperature—all of this for each wavelength.?
The emissive power may, by simple geometric arguments, be shown to be

connected with the energy density #(\, T) inside the cavity. The relation is

o, 1y = ED 1)

The energy density is the quantity of theoretical interest, and further under-
standing of it came in 1894 from the work of Wien, who, again using very
general arguments,® showed that the energy density had to be of the form

u(h, T) = N° fNT) (1-2)

with f still an unknown funcuon of a single variable. If, as is convenient, one
deals instead with the energy density as a function of frequency, #(v, T), then it
‘follows from the fact that

‘ d
(v, T) = u(), T)};}
: - =W T) NGE)

2 These matters are discussed in many textbooks on modern physics and stausucal
physics. References can be found at cthe end of this chapter.

3 Wien considered a perfectly reflecting spherical cavity contracting adiabatically.

The redisuibution of the energy as 2 function of X has to be caused by the Doppler shift

on reflection. See Chaprer V in F. K. Richtmyer, E. H. Kennard, and J. N. Cooper Intro-
duction to- Modern Physics, McGraw-Hill, New York, 1969.
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Fig. 1-1. Experimental verification of Eq. 1-2 in the form #(\TY/T® = a
universal function of aT.

that the Wien law reads , .
u(v, T) = »g (7) a9

The implications of this law, which was confirmed experihmcntally (Fig. 1.1),
are twofold:

1. Given the spectral distribution of black body radiation at one tem-
-perature, the distribution at any other temperature can be found with the help
of the expressions .given above.

2. If the function ﬂx)—or, equivalently, the function g(x)—has a maxi--
mum for some value of x > 0, then the wavelength Auax at which the energy
density, and hence the emissive power, has its maximum value, has the form -

b ~,
Amax = 'E: ‘ (1‘5)

where b is a universal constant.

Wien used a model {of no interest, except to the historian) to. predict a
form for g(v/ T) The form was

g/T) = it (1-6)

and, remarkably enough, this form, containing two adjustable parameters, fit
the high frequency (low wavelength) data very well. The formulz is not, how-
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Fig. 1-2. (@) Distribution of power radiafed by a black body at various tempera-
tures. () Compa.nson of data at 1600°K with Planck formula and Rayleigh-Jeans
formula.

ever, in accord with some very general notions of classical physics. Rayleigh, in
1900, derived the result
gy

“, T) = Syl | (1-7)

where £ is Boltzmann's constant, £ = 1:38 X 10-1¢ erg/deg and ¢ is the velocity
of light, ¢ = 3.00 X 10'° cm/sec. The ingredients that went into the derivation
were (1) the classical law of equipartition of energy, according to which the
- average energy per degree of freedom for a dynamical system in equilibrium is,

in this context,* £T, and (2) the calculation of the number of modes (i.., degrees

of freedom) for electromagnetlc radiation with frequency in the interval (v, v +
" dv), confined in a cavity.? -

4The equipam'tion law predicts that the energy per degree of freedom is 4T/2. For
an oscillator—and the modes of the electromagnetic field are simple hatrmonic oscillators—
a contribution of 4T/2 from the kinetic eneigy is matched by a like contribution from the
potential energy, giving £T.

5 We will need this result again, and derive it in Chapter 23. The number of modes is
4x*/e%, further multiplied by a factor of 2 Because transverse el!ctromagnenc waves cof-
. respond to two-dimensional harmonic oscillators.



The Limits of Classical Physics 5

The Rayleigh-Jeans law (1-7) (Jeans made a minor contribution to its
derivation) does not agree with experiment at high frequencies, where the Wien
formula warks, though it does fit the experimental curve at low frequencies
(Fig. 1.2). The Rayleigh-Jeans law cannot, on general grounds, be correct, since
the total energy density (integrated over all ftequencnes) is predicted to be
infinite! » .

In 1900, Max ‘Planck found a formula by an ingenious interpolation
between the high-frequency Wien formula and the low-frequency Rayleigh-
Jeans law. The formula is -

8xh »?
o T _
where b, Planck’s constant, is an adjustable parameter whose numerical value was

found to be A = 6.63 X 10~* erg sec. This law apptoaches the Rayleigh Jcans
form when » — 0, and reduces to

w(y, T) = (1-8)

ul, T) = 8_;},' Y3 g hrIkT (1 — g—hr/kT)~1-
h B . .
v, %_ Y3 g—hr/ET - (1-9)

when the frequency is large, or, more a.ccurately, when Av >> kT. If we rewrite
the formula as a praduct of the number of modes [we obtain' this from (1-7) by
_ dividing the energy density by £7 and another factor that can be interpreted as
the average energy per degree of freedom
8=/ hy
A M _§
_8wt o M/kT

e ehr/FT —

uly, T) =

(1-10)

we see that the classical equipartition law is altered whenever the frequencies are
not small compared with £T/h. This alteration in the equipartition law shows
that the modes have an average energy that depends on their frequency, and
that the high frequency modes have a very small average energy. This effective
cut-off removes the difficulty of the Rayleigh-Jeans density formula: the total
energy in a cavity of unit volume is no longer infinite. We have

7 8rh [ »?

—CT o Ve"" kT _ 1 ‘

_ 8xh (hv/kT )2 d(hv/kT)

s gWIRT _ 1

8wk!

— T4
wa Sy

UurT) =

il

(1-11)
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The integral can be evaluated,® and the result is the Stefan-Boltzmann expression
for the total radiation epergy per unit volume

CUT) = et (1-12)

with 4 = 7.56 X 107 erg/cm?® deg*, derived much eatlier, except for the
numerical constant in front, on the basis of thermodynamical reasoning. A
departure from the pure equipartition law was not entirely unexpected: one
consequence of it was the Dulong-Petit law of specific heats, according to
which the product of the atomic (or molecular) weight and the specific heat is a
constant for all solids; yet departures from the Dulong-Petit predictions were
observed as early as 1872.7 These departures indicated that the specific heat
decreased at lower temperatures.®

The unqualified success of his formula drove Planck to search for its
origin, and within two months he found that he could derive it by assuming
that the energy associated with each mode of the electromagnetic field did not
vary continuously (with avetage value £T) but was an integral multiple of some.
minimum quantum of energy &. Under these circumstances a calculation of the
‘average energy associated with each mode, using the Boltzmann probability
distribution in a system of equilibrium ac - temperature T,

—E/kT

ST (1-13)

E

P(E) =

led to

E= Y Ep(ﬁ) '
. E :

nno

Z e IKT

n=0

. = ’ - -« )
f dx x3 (2 — 1)1 =[ dxx¥e = 2 e
0 0 n=0 : . )
’ -] 1 * . N1
=Z f dyy‘g—v=6 _—=i
[

a=o(n + 1)* el 15
7 Acsording to the equipartition law an assembly of N oscillators (and a lattice of -
atoms with elastic forces between them may be so viewed) will have energy 3N£T, the
factor 3 coming from the fact that the oscillators in a solid are three-dimensional, rather
than two-dimensional as for the radiation field in an enclosure. The specific heat for a mole
is obtained by differentiating with respect to T and setting N = No, Avogadro’s number,
- sothat C, = 3Nok = 3R where R = 8.28 x 107 erg /deg.
8 Specific heats will be discussed very briefly in Chapeer 20.

E n§ e—nﬂ (kT
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= —8————2 e—-m:

n-O

3 e

n=0/ . 2= /kT

e‘l

1 — €% cme/er

&
T gnT (1-14)
* This agrees with (1-10) provided we make the identification

&= hv (1-15)

and do not change the number of modes.
Planck argued that for some unknown reason the atoms in the walls of the
cavity emitted radiation in “'quanta’ with energy nbv (n = 1,2,3, . . ), but °
consistency demanded, as established by Einstein a few years later, that electro- -
magnetic radiation bebaved as if it consisted of a collection of energy quanta with
energy by.®

The energy carried per quantum is exttemcly small. For light in the
optical range, with, say, A = 6000 A
¢ 663X 107" X 3.00 X 10§’

hy = b~ =
g e 6% 107

=~ 33X 1072 erg

so that the number of light quanta of this wavelength emitted by a 100-wart
source, say, is

100 X ?107
N = ————— = 3 X 10*® quanta/sec
33X 10712 quants/
With so many quanta present, it is perhaps not surprising that we db not ex-
perience the particle nature of light directly; we shall see that on a macroscopic
scale no deviations from classical optics are expected. Nevertheless, Planck’s
" interpretation of his formula radically changes our picture of radiation.

B. The Photoelectric Effect

As successful as the Planck formula was, the conclusion from it of the
quantum nature of radiation is hardly compelling. An important contribution
to its acceptance came from the work of Albert Einstein, who in 1905 used the

9 For a given frequency » there may be any integral number of quanta present, and
hence the energy can take on the values nby, with # = 0,1,2,3, . ...



