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. Preface

This is a textbook for use in the usual year-long course in electromagnetism at an
intermediate level given for advanced undergraduates. I have done my best to
make it as student oriented as possible by writing it in a systematic and
straightforward way without any sleight of hand, and minimum use:-of “It can be
shown that....” I have also tried to make clear the motivations for each step in a
derivation or each new concept as it is introduced. At appropriate points I have’
pointed out the source of many of the simple mistakes commonly made by
students and have suggested how they may be prevented. There is extensive cross
. referencing in the text so that there should be no doubt as to the detailed source
of any specific result or its relation to the rest of the subject; this will also make
the book much more useful as a reference source well after the course has been
completed. o ‘ '
The empbhasis is on the. properties and sources of the field vectors, and 1
hope that I have succeeded in ‘making clear the shifts in concepts and points of
view that are involved in the change from action at a distance to fields. The
overall treatment is gererally that of a macroscopic and empirical description of
phenomena, although the microscopic point of view is presented in the discussion
of conductivity in Sections 12-5 and 24-8. However, Appendix B briefly surveys -
the microscopic origins of electromagnetic properties, and it is written and
organized so that, if desired, it can be taken up section by section ‘at an
appropriate intermediate point. Thus Section B-1 could be discussed anytime after
Section 10-7, and most of Section B-2 can follow after Section 20-5 while the last
part_on ferromagnetism can follow Section 20-7; finally, Section B-3 could be
covered after Section 24-8 has been mastered and the student has worked Exercise
24-28. Similarly, even more flexibility is possible since separate sections of
Appendix A that deals with the motion of charged particles can be studied
anytime after the corresponding force term involving E and/or B has been
obtained. , :
SI units are used throughout; in practice, this means we use MKSA units. It
is virtually certain, however, that at some time a student will encounter material
in Gaussian units and will need some guidance on what to do about it. This is the
purpose of Chapter 23-in which other unit systems are discussed, but only after
the general theory as given by Maxwell’s équations has been systematically
described. I have written this chapter primarily in terms of the purely practical
aspects of how to recognize an equation written in other unit systems, how to put
it in more familiar form if desired, and exactly what numbers should one put into
an equation in Gaussian units in order to get a correct answer. »
In Chapter 9, the boundary conditions ‘'satisfied by an arbitrary vector at a
surface of discontinuity in properties are obtained in the general form involving
its divergence and curl. Not only does this help the student by showing the
importance of knowing these particular source equations but it simplifies later
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discussion since, as each new vector is defined, its boundary conditions can be
“fourld at once without having, in effect, to rederive them each time.
There are over 130 worked-out examples in the text. Virtually all of the:
- standard ones are included, many of them done in more detail than is usually
found, with particular emphasis on the crugial stage of setting up the problem in
- the first place, since this is so often what causes students so much difficulty. I
have also included 555 exercises..Some are numerical to give an idea of typical
orders of magnitude, some are similar- to examples of the text, many refer to
completely different situations, and some involve extensions of the theory. Many
of these exercises will be found to be suitable for use as additional examples for
classroom analysis. Answers t0 odd-numbered exercises are provided except, of
course, for those in which the answer is included in the statement of the problem.
I have benefited over the years from discussions with and the questions of
many students and my colleagues; I am grateful for their contributions to the
final character of this book. Parts of Chapter 28 on Special Relativity have been’
taken verbatim or nearly so from my book Introductory Topics in Theoretical
Physics, also published by John Wiley & Sons, and I acknowledge their permis-
sion to_do so. - SRR .

RoALD K. WANGSNESS
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‘Introduction

... Faraday, in his mind’s eye, saw lines of force traversing all space
where the mathematicians saw centres of force attracting at a distance:
Faraday saw a medium where they saw nothing but distance: Faraday.
sought the seat of the phenomena in rezal actions going on in the medium,
they were satisfied that they had found it in a power of action at a
distance impressed on the electric fluids. '

_ —J. C. Maxwell,
A Treatise on Electricity and Magnetism

It has been more than 100 years since Maxwell wrote the above in the preface to
his now-famous book. His-aim was to put the field concepts, which Faraday had
been so instrumental in developing, into mathematical forms that would be
convenient to use and would emphasize the fields as basic to a coherent descrip-
tion of electromagnetic effects. At that time, it had been only slightly more than
50 years since Oersted and Ampére had shown the relation between electricity
and magnetissm—subjects that had been studied and developed completely sep-
arately over a long period. The emphasis had been primarily on the forces exerted
~ between electric charges and between electric currents and the idea of shifting to
electric and magnetic fields as the primary features had little acceptance and was
often, in fact, viewed with outright hostility.

As the title of this book indicates, times have changed, and our main interest
here is the study of the nature, properties, and origins of electromagnetic fields,
that is, of electric and magnetic vector quantities that are defined as functions of
time and of position in space. Forces, and associated concepts such as energy,
“have not disappeared from the subject, of course, and it is desirable to begin with
forces and to define the field vectors in terms of them. Nevertheless, our principal
aim is to express our descriptions of phenomena in terms of fields in as complete
a manner as we possibly can. This emphasis on fields has proved to be extremely
rewarding and it is difficult to imagine how electromagnetic theory could have
been developed to its present state without it.

This book contains more material than is normally covered in the usual
one-year course; all of it, however, is of interest and value to a serious student of
physics. , '

 The points of view of all authors are generally not the same, and no book
discusses every detail of a given subject. Here is a short list of relatively recent
books on electromagnetism that are written at roughly the same level as this one.

1961 W. B. Cheston, Elementary Theory of Electric and Magnetic Fields, Wiley, New York,

N D. M. Cook, The Theory of the Electromagnetic Field, Prentice-Hall, Englewood Cliffs,
J., 1975. ,

INTRODUCTION 1.
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P. Lorrain and D. R. Corson, Eleciromagnetic Fields and Waves, Second Edition,
Freeman, San Francisco, 1970. -

J. R. Reitz and F. J. Milford, Foundations of Electromagnetic Theory, Second Edition,
Addison-Wesley, Reading, Mass., 1967.

A. Shadowitz, The Electromagnetic Field, McGraw-Hill, New York, 1975. '
The following books discuss electromagnetism at a more advanced level:

J. D. Jackson, Classical Electrodynamics, Second Edition, Wiley, New York, 1975..

W. K. H. Panofsky and M. Phillips, Classical EIectricity and Magnetism, Second Fdition,
Addison-Wesley, Reading, Mass., 1962.

J. A. Stratton, Electromagnetic Theory, McGraw-Hill, New York, 1941.
(Finally, a note on notation: in this book, the symbols =,~, ~,~, #

always mean, respectively, equal to, approximately equal io, of the order of
magnitude of, proportional to, and different from.)
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Chapter Vectors

In the study of electricity and magnetism, we are constantly dealing with quénti-
ties that need to be described in terms of, their directions as well as their
magnitudes. Such quantities are called vectors and it'is well to consider their
properties in gengral before we-meet specific examples. Using the notation and
terminology that has been developed for this purpose enables us to state our
results more compactly and to understand their basic physical significance more
easily. :

1-1  Definition of Vector

The properties of the displacement of a point provide us the essentials required for
our definition. If we start at some point P, and move in some arbitrary way to
another point P,, we see from Figure 1-1 that-the ner effect of the motion is the
same as if the point were moved directly along the straight line D from P, to P, as.
indicated by the direction of the arrow. This line D is called the displacement and
is characterized by both a magnitude (its length) and a direction (from P, to P,).
If we now further displace our point along E from P, to still anpther point P,, we
see from Figure 1-2 that the new net effect is the same as if the point had been
given the single displacement F from P, to P,. Accordingly, we can speak of F as
the resultant, or sum, of the successive displacements D and E, so that Figure 1-2
shows the fundamental way in which displacements are combined or added to
obtain their resultant. ' : '
A vector is a generalization of these considerations in that it is defined as
any quantity which has the same mathematical properties as the displacement of a
point. Thus we see that a vector has a magnitude; it has a direction; .and the
addition of two vectors of the same intrinsic nature follows the basic rule
illustrated in Figure 1-2. Because of the first two properties, we can represent a
. vector by a directed line such as those already used for displacements. A vector is"
generally printed in boldface type, thus, A; its magnitude will be represented by
-|A] or by A. ' : )
A scalar is a quantity that has magnitude pnly. For example, the mass of a
body is a scalar, whereas its weight, which is the gravitational force acting on the
body, is a vector. _ ' i
Because of the nature of a vector as a directed quantity, it follows that a
parallel displacement of a vector does not alter it, or, in other words, two vectors
are equal if they have the same magnitude and direction. This is illustrated in
Figure 1-3 where we see that A=A’. Now we can investigate what mathematical
operations we can perform with and on vectors. :

DEFINITION OF A VECTOR 3



Figure 1-1. D is the displacemant of the point
' from P, to P,.

Figure 1-2. F is the resultant of the dispiacements D
and E.

Figure 1-3. These two vectors dre equal.

1-2 Addition

According to our basic rule we find that, if we take A and add B, we obtain the
sum C shown as a solid line in Figure 1-4. We also see that, if we take B and then
add A, we get the same vector C. Therefore addition of vectors has the property
that

C=A+B=B+A (1-1)

Figure 1-4. The sum of two vectors does not depend
on the order in which they are added.
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erty of vector addition:

D=(A+.B)+C;=A+(B+C)=(A+C)+B. B - (1-2)

By proceeding in the same manner, one can establish the associative prop-

and so on. S

If we reverse a displacement such as D in Figure 1-1 by retracing it in the
opposite direction, the net effect is then no displacement; hence it i5 appropriate
to define the negative of a vector as a vector of the same magnitude but reversed
in direction, for then we should obtain A+(—A)=0, as we would want. Then we
can easily subtract a vector by adding its negative: '

A-B=A+(-B) | (13)

The product of a scalar s and a vector, which we write as either sA or As, is
then merely the sum of s-vectors A, or is a vector with a magnitude equal to |s|
times the magnitude of A, and is in the same direction as A if 5 is positive, and in
the opposite direction to A if 5 is negative. ‘

1-3 Unit Vectors

A unit vector is defined as a vector of unit magnitude and will be written with a
circumflex above it, thus, é; since unit vectors are always taken to be dimension-
less we will have |¢|=1. If, for example, a unit vector & is chosen to have the

direction of A, then we can write

"A=4id and i= (1-4)

NS

This point is illustrated in Figure 1-5.

a A
o v .j . '
A Figure 1-5. & is a unit vector in the direction of A.
b4
| 7
K y
2 ‘
Flgure 1-6. Unit vectors for rectangular coordi-

x nates. '
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A particularly convenient set of unit vectors can.be associated with a
rectangular coordinate system. They are Written X, §, Z and are defined to be in
the directions of the x, y, and z axes respectively, as shown in Figure 1-6. In other
words, each is in the direction of increasing value of the corresponding rectangu-
lar coordinate. We also see that any one of this set is perpendicular to each of the
other two. .

As we shall see, it is often convenient and advantageous to define other unit
vectors.

1-4 Components

In order to proceed further, it is convenient to refer our vectors to particular
coordinate systems. From Figure 1-7, we see that we can write a vector A as the
sum of three properly chosen vectors, each of which is parallel to one of the axes
of a rectangular coordinate system; that is, A=A, +A +A,. It is more useful,
however, to write each of these terms as the product of a scalar and the unit
vectors of Figure 1-6. Thus we write A, =A%, and so on, and the above
expression becomes

A=AXR+AF+AE (1-5)

The three scalars A4,, 4,, 4, are called the components of A; hence we see that a
vector can be specified by three numbers.. The components can be positive or
negative; for example, if 4, were negative, then the vector A, of Figure 1-7 would
have a direction in the sense of decreasing values of x.

From Figure 1-7, it is seen that the magnitude of a vector can be expressed
in terms of its components as

A=|A|=(42+42+42)" (1-6)

In Figure 1-8, we illustrate the fact that A makes specific angles with respect
to each of the axes; these angles a, (3, y are called the direction angles of A and are
measured from the positive directions of their respective axes. Figure 1-9 shows

Y

/ Ay Figure 1-7. A is the sum of the rectangular vector
S : components.
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Figure 1-8. Definition of direction anglés.

A, *  Figure 1-9. A,, is the x component of Ar

the: plane contammg both A and X and we see that 4, is glven by A =A cosa.
Combining this with (1-6), we get

lx=cosa=%‘-= 4, — (1-7)
(A2+A2+A2)/ - \

where [, is called a direction cosine. Similar expressions hold for the other two
direction angles 8 and y and their associated direction cosines l and [, so we see
from (1-6) and (1-7) that, if we know the rectangular components of a vector, we
can calculate its magnitude and direction. -

If we now combine (1-4), (1-5), and (1-7), we find that the unit vector & can
also be written as . _

ﬁ==1, +ly+1% - ' (1-8)1
so that the components of a unit vector in a given direction are simply the

direction cosines associated with that direction. If we now apply the general result
" (1-6) to the specific vector 4, we get the important relation involving direction

Figure 1-10. A component of a sum equals the sum'
of the corresponding components.

_ COMPONENTS 7



