Problem Solving and
- Structured Programming
with Pascal

Ali Behforooz Martin O. Holoien

i

il i

1 1o my parents —A.B.

To my parents and my grandchildren,
Annie, Kari, and Isaac —M.H.

Brooks/Cole Publishing Company

A Division of Wadsworth, Inc.

© 1986 by Wadsworth, Inc., Belmont, California 94002. All rights reserved. No part of this book may be
reproduced, stored in a retrieval system, or transcribed, in any form or by any means—electronic, mechanical,
photocopying, recording, or otherwise—without the prior written permission of the publisher, Brooks/Cole
Publishing Company, Monterey, California 93940, a division of Wadsworth, Inc.

Printed in the United States of America
100 9 87 65 4 32

Library of Congress Cataloging-in-Publication Data
Behforooz, Ali, [date]

Problem solving and structured programming with
Pascal.

Includes index.

1. PASCAL (Computer program language) 2. Structured
programming. 1. Holoien, Martin O., [date]
QA76.73.P2B4445 1986 005.13'3 85-28008

ISEN 0-534-05736-5

Sponsoring Editors: Neil Oatley, Cynthia C. Stormer

Editorial Assistants: Gabriele Bert, Corinne Kibbe

Production Editor: Michael G. Oates

Production Associate: Dorothy J. Bell

Manuscript Editor: Susan Thornton

Permissions Editor: Carline Haga

Interior and Cover Design: Katherine Minerva

Cover Photo: Walter Nelson/Fran Heyl Associates

Art Coordinators: Michéle Judge, Lisa Torri

Interior Hiustration: Vantage Art, Massepequa, New York
Typesetting: Syntax International, Singapore

Cover Printing: Phoenix Color Corp., Long Island City, New York
Printing and Binding: R.R. Donnelley & Sons Co., Crawfordsville, Indiana

Hl Preface

Problem Solving and Structured Programming with Pascal is designed for a first
course in problem solving and computer programming in which Pascal is the program-
ming language. No previous knowledge of programming is presumed. The mathematics
background required is that equivalent to three years of high school mathematics or a
course in college algebra and trigonometry.

Our aim in writing this book is to help teach students the skills and concepts needed
to become good problem solvers capable of using the Pascal language well. Not until
these skills are developed is the Pascal language presented. Subsequently, as more
powerful aspects of the language are developed, so are good programming techniques—
all based on the solid foundation of problem solving and algorithm development pre-
sented in the first chapter.

Algorithm and program development are presented from the top-down approach.
Students learn how to produce precise statements of problems as well as analyze input
and output requirements. They are taught techniques for developing problem solutions
in modules and introduced early to the concept of subprograms in Pascal. As students
learn the programming phase of problem solving, they are taught how to design and
test each module individually first, then put modules together in a single program that
produces the required results. As a consequence of our approach, students should
develop confidence in solving any problem presented to them and should be able to
produce good, understandable solutions to such problems in which the computer is the
major tool.

All program examples in this book have been run on a DEC VAX11/750 computer
system running under DEC’s RMS operating system. Any file processing done in the
programs is, therefore, done according to the requirements of the VAX11/750.

To provide a guide to the pedagogical development used, we now review the approach
taken in each chapter. In Chapter 1, the fundamental concepts of problem solving are
discussed quite apart from any programming language features. Four phases of problem
solving—precisely defining the problem, analyzing the input and output requirements,
developing the solution algorithm, and developing the Pascal program—are presented,
as is the top-down approach to problem solving. Considerable time is devoted to
algorithms, their properties, their modular development, and methods for representing

them.
v

vi Preface

Chapter 2 presents some elementary programming language concepts with particular
emphasis on how they occur in Pascal. The standard data types, and how to make
Pascal declarations that relate to each of them, are discussed. Elementary input and
output concepts are explained, as well as other features of Pascal needed to be able to
write a simple but complete program. Chapter 3 leads the student into the basics of
control structures, such as the if-then-else, for-loop, while-loop, and repeat-until structures.

Chapter 4 takes a careful look at program errors and often-overlooked concepts
related to that topic. Three kinds of program errors (syntax, logic, and run-time) are
discussed, and techniques are introduced to prevent them in the first place. Methods
for locating and removing the errors, if they do occur, are also presented. Actual
programmed examples are analyzed for various errors, and students are shown how to
debug them. No new Pascal concepts are introduced in this chapter, so if lack of time
prevents its inclusion in the course, students will not miss any aspects of the Pascal
language. However, the authors have found it important to formally discuss in class
the occurrence and removal of program errors.

Subprograms are introduced in Chapter 5, as well as the syntax and application of
functions and procedures in Pascal. From this point on in the book, modular program-
ming is emphasized and examples are given to reinforce that principle.

Array declarations and applications are considered in Chapter 6, as are text files and
the processing of text files. After thorough instruction in the topics in this chapter,
students will be able to write programs more like those developed by professional
applications programmers.

In Chapter 7, we discuss advanced topics related to control structures. Specifically,
the following capabilities of Pascal are taught: case structure, if-then-else-if structure,
and nested loops. Several complete programming examples illustrate these concepts.

Advanced topics related to functions and procedures are the focus of Chapter 8.
Various kinds of parameters are discussed, in particular, the use of functions and
procedures as parameters. The important concept of recursion and recursive subpro-
grams is a significant part of this chapter. Diagrams and examples are carefully pre-
sented to make this vital topic lucid for the student.

Chapter 9 is devoted to advanced concepts related to structured data types. In par-
ticular, we discuss records, linked lists using pointer-type data, and files of records. If
the course being offered is intended primarily to teach the fundamental features of the
Pascal language, the instructor may choose to omit the sections on linked lists and
pointer-type data.

Finall);, Chapter 10 contains some basic concepts of data structures such as stacks,
queues, linked lists, and binary trees. Examples are given to illustrate the implemen-
tation and processing of these data structures in Pascal. If time does not permit, this
chapter may be omitted from a course in problem solving and Pascal programming.
Nevertheless, we believe that if students are introduced to these concepts at the end of
such a course, they will be better prepared to progress through successive computer
science courses. However, if the students are not primarily majors in computer science,
this chapter should probably be omitted.

Appendix A is a list of all standard Pascal functions, procedures, and identifiers, as
well as a list of all reserved words. Anyone who has taught a course in Pascal will
appreciate this ready-reference of these facts.

Preface vii

Syntax diagrams are the topic of Appendix B. Every Pascal statement structure is
clearly described by means of a syntax diagram. Any questions regarding the punctua-
tion or use of reserved words in any Pascal statement can be answered by referring to
the appropriate section of this appendix. Diagrams are arranged alphabetically by the
word normally used to identify a given Pascal statement.

Included among the unusual features of this book are the following:

1. The unique approach of teaching problem solving before any mention is made of
the Pascal language.

2. A complete chapter devoted to preventing, locating, and removing program errors.

3. Early introduction of subprograms so as to facilitate teaching modular design of
programs.

4. A large number of solved problems demonstrating problem-solving techniques and
good programming practices.

5. Anunusually large number of exercises for each chapter, making it possible to select
a specific problem to emphasize a given concept.

6. Chapter summaries that make it possible to review in a short time the concepts
associated with a given day’s topics.

Many helpful suggestions were made by the reviewers of this manuscript, almost all
of which were incorporated in the final version. We extend sincere thanks to Andrew
Batts, Murray State University; Dwight Caughfield, Abilene Christian University; James
Clark, University of Tennessee—Martin; Henry Etlinger, Rochester Institute of Tech-
nology; Joe Grimes, California State University—San Luis Obispo; Norman Lindquist,
Saint Andrews College; George Medelinskas, North Shore Community College; Clin-
ton Smullen, University of Tennessee~Chattanooga; and Allan Tharp, North Carolina
State University. Their thoughtful comments and creative ideas went far toward making
this book as useful as we hope it will be.

Ali Behforooz
Martin O. Holoien

B Contents

Chapter One
Problem Solving and Algorithm Development 1

Introduction 2

Some Problem-Solving Examples 3

Problem-Solving Phases 14

Simple Solution Structures 20

Algorithms: Definition, Development, and Analysis 25
Summary 58

Exercises 59

Chapter Two
Introductory Programming Concepts 65

Introduction 66

Computer Programming Languages 67
Executing Pascal Programs 71

A Brief History of the Pascal Programming Language 72
Structure of a Pascal Program 73

Data Types in Pascal 74

Pascal Identifiers 76

Some Pascal Statements 79

Arithmetic Operations and Expressions 93
Rounding and Truncating 98

Comment Lines 101

Programming Examples 104

x Contents

Summary 108
Exercises 111

Chapter Three
Introductory Control Concepts and Structures 116

Introduction 117

Relational Expressions and Operators 117
Logical (Boolean) Expressions and Operators 119
Two-Way Selection Structures 123

Two Complete Problems 126

Repetition Structures 129

Two Complete Problems 141

Summary 147

Exercises 149

Chapter Four
Program Errors 157

Introduction 158

Syntax Errors 158

Execution (or Run-Time) Errors 177
Logic Errors 180

Debugging 188

Summary 192

Exercises 193

Chapter Five
Iintroduction to Functions and Procedures 196

Introduction 197
Reasons for Subdividing a Program 197
Subprograms 198

Contents xi

Relating Main Programs and Subprograms to Each Other 205
Complete Programming Problems 214

Summary 221

Exercises 222

Chapter Six
More on Type and Variable Declarations 230

Introduction 231

Pascal Data Types 231

Arrays (Subscripted Variables) 237

More on the Use of the Type Statement 252
Text Files 255

Complete Programming Example 264
Summary 267

Exercises 270

Chapter Seven
More on Control Structures 283

Introduction 284

Multiway Selection Structure 284
Nested Repetition Structures 296
Four Complete Problems 301
Label and Goto Statements 318
Summary 319

Exercises 321

Chapter Eight
More on Functions and Procedures Plus Recursion 328
Introduction 329

More on Parameters 329
Forward Declaration of Procedures and Functions 335

xii Contents

External Subprograms 336

Sort and Search Subprograms 336
Recursive Definitions and Algorithms 344
Summary 352

Exercises 353

Chapter Nine
More on Structured Data Types 365

Introduction 366

Record Structure 367

Files of Records 385

Set Structures 389
Pointer-Data Type 401

The Long-Integer Problem 410
Summary 418

Exercises 420

Chapter Ten
Introduction to Data Structures 437

Introduction 438

Linear Data Structures 439
Nonlinear Data Structures 467
Summary 475

Exercises 477

Appendix A

Pascal Standard Functions, Procedures, identifiers, and
Reserved Words 482

Standard Functions 482
Standard Procedures 483
Standard Identifiers 484
Reserved Words 484

Contents xiil

Appendix B
Syntax Diagrams for Pascal Statements and Structures 485

Declarations 485
Statements 489

Answers to Exercises 492
Index 507

Chapter One

Problem Solving and Algorithm Development

Iintroduction

Almost everyone in developed nations of the world is at least partially aware of
the influential role played by computers today. There are many aspects of our
lives in which computers affect us directly, as, for example, in making travel res-
ervations, bank transactions, retail purchases, college registrations, library trans-
actions, driver’s license renewals, payroll transactions, and on and on, the list
growing almost daily. How often have you heard from customer service personnel,
“I'm sorry, I can’t handle this right now because the computer is down”? And
that response has likely made you angry. One reason for your anger may have
been that you didn’t understand what was happening. You may have thought,
“How can computers cause so much trouble in my life?” Had you been more
knowledgeable about the way computer processing of information takes place,
your frustation might have been less.

If you have experienced some hostility toward computers, you probably realized
even then that they really are necessary for life to continue in the manner to which
millions of us have become accustomed. That’s not to say that there aren’t many
improvements that could be made in a lot of computer applications. There are.
However, maybe an important reason that improvements aren’t taking place any
more rapidly than they are is that the general public is not educated enough to
know what they can expect from computers, what changes they can realistically
press for. One of the goals of this book is to give you the familiarity with computers
that will let you better understand many situations in which they play a role in
the world around you. Furthermore, when you finish this book we hope you’ll
be able to use many computer capabilities to your own significant benefit. The
computer is, after all, probably the most important tool available to assist us in
problem-solving and decision-making situations.

In order to utilize computers to the greatest advantage, there are at least three
areas of knowledge in which one should acquire some facility:

1. problem-solving skills,
2. familiarity with at least one programming language, and
3. acquaintance with a computing environment.

This book deals primarily with the first two of these.

Chapter 1 is devoted entirely to problem solving and algorithm development.
In this chapter we explore in some detail concepts and skills that facilitate those
processes. You will see that learning a programming language is relatively easy

Problem Solving and Algorithm Development 3

once a proper foundation has been laid in these areas. Although much more of
this book is devoted to teaching the Pascal programming language than it is to
problem solving and algorithm development, do not underestimate the importance
of Chapter 1. It provides a basis for all that follows.

You will notice also that as we discuss aspects of the programming language
Pascal, we will stress certain techniques that are commonly called programming
style. If you plan to become an effective user of computers, pay special attention
to the matter of programming style. 1t can mean the difference between producing
programs that are understandable and useful and ones that even the developer is
unable to comprehend once they have become “cold” to the memory.

Some Problem-Solving Examples

Before we discuss certain aspects of the problem-solving process more formally,
let’s consider some examples (o try to gain some insight into how one is successful
at problem solving.

N EXAMPLE 1

Problem: Bob and Susan Jones and their children, Jim and Annie, had a summer home
at which they spent almost every weekend for several years. It was their habit to
start for the city at about the same time each Sunday afternoon, and as a result,
they invariably met a freight train coming toward them on the railroad tracks as
they approached a certain section of the highway. Just as certain as meeting the
train was Jim’s question “How long is the train, Mom?”

Solution: Susan suggested to Jim, “Count the number of railroad cars as we go by, then
I'll find out from the railroad company how long each car is, then we can multiply
the number of cars by the length of each and find out how long the train is.”

So Jim would begin to count the cars. He was never able to complete the task,
however, becausc he always lost track when some of the cars would disappear
behind a clump of trees, or when Annie would ask him a distracting question. So
as good as the suggested solution for Jim’s problem seemed, it was simply im-
possible to solve the problem that way.

Some years later when Jim was in the eighth grade, he borrowed a stopwatch
from one of his friends. On the family’s return to the city at the customary time
that Sunday afternoon, sure enough, there was the train coming toward the car,
and Jim was ready to solve his problem of several years’ standing. They saw the
train a way off in front of them as Jim asked his father, “Dad, would you please
keep the car’s speed at 55 miles per hour as we go by the train today? I'll tell you
why when we have gone past the train.” Of course, Dad agreed, and soon the train
was a short way from the automobile. Just as the front of the locomotive was

4 Chapter One

alongside the automobile, Jim started the stopwatch, keeping it running until the
end of the caboose went by the automobile.

“I'm finally going to find out how long that train is,” he told his family, “I
checked with the railroad company about the speed of this train at this section
of its trip and was told that it is 50 miles per hour. Dad kept the speed of the
automobile at 55 miles per hour, so that means that the car and the train were
going past each other at the rate of 105 miles per hour. I just now measured how
long it took for our car and the train to pass each other and found it to be 36
seconds, which is equal to 0.01 hour because 1 hour equals 60 x 60 seconds, or
3600 seconds. Therefore, the train’s length can be computed by multiplying the
speed at which the car and the train passed each other by the time it took to do
so. This gives the result

105 mph x 0.01 hr = 1.05 mi

Thus the train is 1.05 miles long.”

Jim’s family was pleasantly surprised at Jim’s being able to solve the problem
but wondered why this second method worked although the earlier suggested so-
lution hadn’t. If you think about it for a bit you will soon realize why. Although
the first method was simple enough, it was impossible to carry out because no
one had thought of the difficulties that would arise in counting the railroad cars.
The second method was successful because it involved the completion of tasks
possible to perform with the resources readily available, and possible to complete
in a reasonable amount of time.

EEN EXAMPLE 2

Problem: Suppose you are asked to develop a step-by-step procedure for maintaining a
correct record of the balance in a checking account. To do this you need to know
the initial amount placed in the account and information about every transaction
affecting the account. These transactions would include the following:

1. withdrawals,

2. deposits,

3. service charges, and
4. interest earned.

Solution: Assume the bank complies with these rules for checking accounts:

1. If at any time during the month the balance becomes less than $200.00, a
monthly fee of $5.00 is charged, plus a service charge of $0.20 per check. These
charges are automatically charged to the account.

2. If the balance remains greater than or equal to $200.00 and less than $1000.00,
no monthly fee is charged, nor are there any charges for writing checks.

3. If the balance is $1000.00 or more, not only are there no charges assessed but
interest is paid at the rate of 0.5 percent per month on the balance over $200.00.
This interest is automatically added to the account on the last day of the month.

Problem Solving and Algorithm Development 5

Next we identify some names to be associated with the solution we develop:

InitBalance: The initial balance in the account.

Balance: The current balance in the account.

TrValue: The amount of the transaction.

TrCode: A code for identifying the transaction. Let’s assume W for a withdrawal,
D for a deposit, I for interest, and S for a service charge.

Date: The date of the transaction.

For each deposit or withdrawal we read the transaction code and the amount
of the transaction from a notebook. To determine interest or service charge, we
check the current balance at the end of the day’s transaction and apply the rules
stated previously.

The procedure that is developed is to be applied daily to give the correct
checkbook balance at the end of each day. Here is such a procedure:

1.0 Assign to Balance the value of InitBalance.
2.0 Perform steps 3.0, 4.0, and 5.0 until there are no more transactions; then pro-
ceed to step 6.0.
30 Read TrCode and TrValue.
40 If TrCode = W then
assign to Balance the difference Balance — TrValue.
50 If TrCode = D then
assign to Balance the sum Balance + TrValue.
6.0 If Balance < 200 then
assign to TrCode the value S;
assign to TrValue the product of the number of checks and 0.20 plus
5.00 if this charge has not been added this month.
7.0 If Balance > = 1000 then
assign to TrCode the value I;
assign to TrValue the product (Balance — 200) * 0.005.
8.0 If TrCode = S then
assign to Balance the difference, Balance — TrValue.
9.0 If TrCode = I then
assign to Balance the sum Balance + TrValue.
10.0 Terminate all processing.

Upon checking this solution to our problem it becomes apparent that all is not
well.

1. We need to know the number of withdrawals (checks written) so that the service
charge can be computed if necessary.

2. If the balance drops below $200.00 we must know whether the $5.00 service
charge has already been added to the account this month.

3. When the balance reaches $1000.00 or more, we add interest only if we are at
the last day of the month.

4. No provision has been made for overdrafts.

T

6 Chapter One

To revise our solution we shall introduce a variable name to indicate the number
of withdrawal transactions, and another to let us know whether the fixed monthly
service charge has been made to the account this month. Suppose we call the
number of withdrawals WCount and use the name Added to specify whether the
monthly service charge has already been added this month. At the start of each
month we initialize Added to no and at the time when we add the monthly service
charge we set Added to yes.

Here is a revised procedure for maintaining a checkbook balance:

1.0 Assign to Balance the value of InitBalance.
2.0 Read the date, and if it is the first of the month, assign to Added the value no.
3.0 Set WCount to zero to indicate that no withdrawals have occurred yet.
4.0 Perform steps 5.0, 6.0, and 7.0 until there are no more transaction data; then
proceed to step 8.
5.0 Read values for TrCode and TrValue.
6.0 If TrCode = W then
if Balance > = TrValue then
assign to Balance the value Balance — TrValue.
Add 1 to WCount.
else report an overdraft.
7.0 If TrCode = D then
assign to Balance the value Balance + TrValue.
8.0 If Balance < 200 then
Set TrCode = S.
Assign to TrValue the product WCount * 0.20.
If Added = no then
add 5 to TrValue.
set Added to yes.
9.0 If Balance > 1000 and Date is end of month then
set TrCode = 1.
Set TrValue = (Balance — 200) * 0.005 (this is the monthly interest)
10.0 If Code = S then
assign to Balance the difference Balance — TrValue.
11.0 If Code = I then
assign to Balance + TrValue.
12.0 Terminate all processing,

Note that in the process of obtaining this solution to the problem, we started
with one procedure, saw some fallacies in it, and modified it until the desired
solution was obtained.

N EXAMPLE 3

Problem: Develop a step-by-step procedure that will read a set of numbers and compute
and report the average of those numbers.

