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Preface

In writing a book on the statistical analysis of time series an author has a
choice of points of view. My selection is the mathematical theory of statistical
inference concerning probabilistic models that are assumed to generate observed
time series. The probability model may involve a deterministic trend and a
random part constituting a stationary stochastic process; the statistical problems
treated have to do with aspects of such trends and processes. Where possible,
the problem is posed as one of finding an optimum procedure and such pro-
cedures are derived. The statistical properties of the various methods are
studied; in many cases they can be developed only in terms of large samples,
that is, on information from series observed a long time. In general these prop-
erties are derived on a rigorous mathematical basis.

While the theory is developed under appropriate mathematical assumptions,
the methods may be used where these assumptions are not strictly satisfied.
It can be expected that in many cases the properties of the procedures will hold
approximately. In any event the precisely stated results of the theorems give
some guidelines for the use of the procedures. Some examples of the application
of the methods are given, and the uses, computational approaches, and inter-
pretations are discussed, but there is no attempt to put the methods in the form
of programs for computers.

This book grew out of a graduate course that I gave for many years at
Columbia University, usually for one semester and occasionally for two semes-
ters. By now the material included in the book cannot be covered completely
in a two-semester course; an instructor using this book as a text will select the
material that he feels most interesting and important. Many exercises are
given. Some of these are applications of the methods described; some of the
problems are to work out special cases of the general theory; some of
the exercises fill in details in complicated proofs; and some extend the
theory.

vii



viii PREFACE

Besides serving as a text book I hope this book will furnish a means by which
statisticians and other persons can learn about time series analysis without
resort to a formal course. Reading this book and doing selected exercises
will lead to a considerable knowledge of statistical methodology useful for the
analysis of time series. This book may also serve for reference. Much material
which has not been assembled together before is presented here in a fairly
coherent fashion. Some new theorems and methods are presented. In other
cases the assumptions of previously stated propositions have been weakened
and conclusions strengthened.

Since the area of time series analysis is so wide, an author must select the
topics he will include. I have described in the introduction (Chapter 1) the
material included as well as the limitations, and the Table of Contents also
gives an indication. It is hoped that the more basic and important topics are
treated here, though to some extent the coverage is a matter of taste. New
methods are constantly being introduced and points of view are changing; the
results here can hardly be definitive. In fact, some material included may at
the present time be rather of historical interest.

In view of the length of this book a few words of advice to readers and
instructors may be useful in selecting material to study and teach. Chapter 2
is a self-contained summary of the methods of least squares; it may be largely
redundant for many statisticians. Chapters 3 and 4 deal with models with
independent random terms (known sometimes as ‘“‘errors in variables”); some
ideas and analysis are introduced which are used later, but the reader interested
mainly in the later chapters can pass over a good deal (including much of
Sections 3.4, 4.3, and 4.4). Autoregressive processes, which are useful in appli-
cations and which illustrate stationary stochastic processes, are treated in
Chapter 5; Sections 5.5 and 5.6 on large-sample theory contain relevant
theorems, but the proofs involve considerable detail and can be omitted.
Statistical inference for these models is basic to analysis of stationary processes
“in the time domain.” Chapter 6 is an extensive study of serial correlation and
tests of independence; Sections 6.3 and 6.4 are primarily of theoretical statistical
interest; Section 6.5 develops the algebra of quadratic forms and ratios of them;
distributions, moments, and approximate distributions are obtained in Sections
6.7 and 6.8, and tables of significance points are given for tests. The first five
sections of Chapter 7 constitute an introduction to stationary stochastic
processes and their spectral distribution functions and densities. Chapter 8
develops the theory of statistics pertaining to stationary stochastic processes.
Estimation of the spectral density is treated in Chapter 9; it forms the basis of
analyzing stationary processes “in the frequency domain.” Section 10.2
extends regression analysis (Chapter 2) to stationary random terms; Section
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10.3 extends Chapters 8 and 9 to this case; and Section 10.4 extends Chapter 6
to the case of residuals from fitted trends. Parts of the book that constitute
units which may be read somewhat independently from other parts are (i)
Chapter 2, (ii) Chapters 3 and 4, (iii} Chapter 5, (iv) Chapter 6, (v) Chapter 7,
and (vi) Chapters 8 and 9.

The statistical analysis of time series in practical applications will also invoke
less formal techniques (which are now sometimes called “‘data analysis™). A
graphical presentation of an observed time series contributes to understanding
the phenomenon. Transformations of the measurement and relations to other
data may be useful. The rather precisely stated procedures studied in this book
will not usually be used in isolation and may be adapted for various situations.
However, in order to investigate statistical methods rigorously within a mathe-
matical framework some aspects of the analysis are formalized. For instance,
the determination of whether an effect is large enough to be important is some-
times formalized as testing the hypothesis that a parameter is 0.

The level of this book is roughly that of my earlier book, An Introduction
to Multivariate Statistical Analysis. Some knowledge of matrix algebra is
needed. (The necessary material is given in the appendix of my earlier book;
additional results are developed in the text and exercises of this present book.)
A general knowledge of statistical methodology is useful; in particular, the
reader is expected to know the standard material of univariate analysis such
as r-tests and F-statistics, the multivariate normal distribution, and the ele-
mentary ideas of estimation and testing hypotheses. Some more sophisticated
theory of testing hypotheses, estimation, and decision theory that is referred to is
developed in the exercises. [The reader is referred to Lehmann (1959) for a
detailed and rigorous treatment of testing hypotheses.] A moderate knowledge
of advanced calculus is assumed. Although real-valued time series are treated, it
is sometimes convenient to write expressions in terms of complex vari-
ables; actually the theory of complex variables is not used beyond the simple
fact thate® = cos 6 4 isin 0 (except for one problem). Probability theory is used
to the extent of characteristic functions and some basic limit theorems.
The theory of stochastic processes is developed to the extent that it is needed.

As noted above, there are many problems posed at the end of each chapter
except the first which is the introduction. Solutions to these problems have
been prepared by Paul Shaman. Solutions which are referred to in the text or
which demonstrate some particularly important point are printed in Appendix
B of this book. Solutions to most other problems (except solutions that are
straightforward and easy) are contained in a Solutions Manual which is issued
as a separate booklet. This booklet is available free of charge by writing to the
publisher.
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CHAPTER 1

Introduction

A time series is a sequence of observations, usually ordered in time, although
in some cases the ordering may be according to another dimension. The
feature of time series analysis which distinguishes it from other statistical
analyses is the explicit recognition of the importance of the order in which the
observations are made. While in many problems the observations are statis-
tically independent, in time series successive observations may be dependent,
and the dependence may depend on the positions in the sequence. The nature
of a series and the structure of its generating process may also involve in other
ways the sequence in which the observations are taken.

In almost every area there are phenomena whose development and variation
with the passing of time are of interest and importance. In daily life one is
interested in aspects of the weather, in prices that one pays, and in features of
one’s health; these change in time. There are characteristics of a nation,
affecting many individuals, such as economic conditions and population, that
evolve and fluctuate over time. The activity of a business, the condition of an
industrial process, the level of a person’s sleep, and the reception of a television
program vary chronologically. The measurement of some particular character-
istic over a period of time constitutes a time series. It may be an hourly record
of temperature at a given place or the annual rainfall at a meteorological
station. It may be a quarterly record of gross national product; an electro-
cardiogram may compose several time series.

There are various purposes for using time series. The objective may be the
prediction of the future based on knowledge of the past; the goal may be the
control of the process producing the series; it may be to obtain an understanding
of the mechanism generating the series; or simply a succinct description of the
salient features of the series may be desired. As statisticians we shall be inter-
ested in statistical inference; on the basis of a limited amount of information, a

1




2 INTRODUCTION CH. 1.

time series of finite length, we wish to make inferences about the probabilistic
mechanism that produced the series; we want to analyze the underlying
structure.

In principle the measurement of many quantities, such as temperature and
voltage, can be made continuously and sometimes is recorded continuously in
the form of a graph. In practice, however, the measurements are often made
discretely in time; in other cases, such as the annual yield of grain per acre,
the measurement must be made at definite intervals of time. Even if the data are
recorded continuously in time only the values at discrete intervals can be used
for digital computations. In this book we shall confine ourselves to time series
that are recorded discretely in time, that is, at regular intervals, such as baro-
metric pressure recorded each hour on the hour. Although the effect of one
quantity on another and the interaction of several characteristics over time are
often of consequence, in many studies a great deal of knowledge may be gained
by the investigation of a single time series; this book (except with respect to
autoregressive systems) is concerned with statistical methods for analyzing a
univariate time series, that is, one type of measurement made repeatedly on the
same object or individual. We shall, furthermore, suppose that the measure-
ment is a real number, such as temperature, which is not limited to a finite (or
denumerable) number of values; such a measurement is often called a con-
tinuous variable. Some measurements we treat mathematically as if they were
continuous in time; for example, annual national income can at best be meas-
ured to the nearest penny, but the number of values that this quantity can take
on is so large that there is no serious slight to reality in considering the variable
as continuous. Moreover, we shall consider series which are rather stable,
that is, ones which tend to stay within certain bounds or at least are changing
slowly, not explosively or abruptly; we would include many meteorological
variables, for instance, but would exclude shock waves.

Let an observed time series be yy, ¥, . .. , yp. The notation means that we
have T numbers, which are observations on some variable made at T equally
distant time points, which for convenience we label 1, 2,..., T. A fairly
general mathematical, statistical, or probabilistic model for the time series can
be written as follows:

(1) Y= () + u, t=1,2,..., 1

The observed series is considered as made up of a completely determined
sequence {f (1)}, which may be called the systematic part, and of a random or
stochastic sequence {u,}, which obeys a probability law. (Signal and noise are
sometimes used for these two components.) These two components of the
observed series are not observable; they are theoretical quantities. For example,
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if the measurements are daily rainfall, the f(¢) might be the climatic norm,
which is the long-run average over many years, and the u, would represent those
vagaries and irregularities in the weather that describe fluctuations from the
climatic norm. Exactly what the decomposition means depends not only on
the data, but, in part, depends on what is thought of as repetitions of the
experiment giving rise to the data. The interpretation of the random part made
here is the so-called “frequency” interpretation. In principle one can repeat the
entire situation, obtaining a new set of observations; the f(t) would be the
same as before, but the random terms would be different, as a new realization
of the stochastic process. The random terms may include errors of observation.
[In effect f(t) = &y,.]

We have some intuitive ideas of what time should mean in such a model or
process. One notion is that time proceeds progressively in one direction.
Another is that events which are close together in time should be relatively highly
related and happenings farther apart in time should not be as strongly related.
The effect of time in the mathematical model (1) can be inserted into specifica-
tions of the function or sequence f(¢); it can be put into the formulation of the
probability process that defines the random term u,; or it can be put into both
components. The first part of this book will be devoted to time series repre-
sented by “error” models, in which the observations are considered to be inde-
pendent random deviations from some function representing trend. In the
second part we shall be concerned with sequences of dependent random
variables, in general stationary stochastic processes with particular emphasis
on autoregressive processes. Finally, we shall treat models in which there is
a trend and the random terms constitute a stationary stochastic process.
Stationary stochastic processes are explained in Chapter 7.

In many cases the model may be completely specified except for a finite num-
ber of parameters; in such a case the problems of statistical inference concern
these parameters. In other cases the model may be more loosely defined and the
corresponding methods are nonparametric. The model is to represent the
mechanism generating the relevant series reasonably well, but as a mathematical
abstraction the model is only an approximation to reality. How precisely the
model can be determined depends on the state of knowledge about the process
being studied, and, correspondingly, the information that can be supplied by
statistical analysis depends on this state of knowledge. In this book many
methods and their properties will be described, but, of course, these are only a
selection from the many methods which are useful and available. Here the
emphasis is on statistical inference and its mathematical basis.

The early development of time series analysis was based on models in which
the effect of time was made in the systematic part, but not in the random part.
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For convenience this case might be termed the classical model, because in a
way it goes back to the time when Gauss and others developed least squares
theory and methods for use in astronomy and physics. In this case we assume
that the random part does not show any effect of time. More specifically, we
assume that the mathematical expectation (that is, the mean value) is zero,
that the variance is constant, and that the u, are uncorrelated at different points
in time. These specifications essentially force any effects of time to be made in
the systematic part f(¢t). The sequence f(t) may depend on unknown coefficients
and known quantities which vary over time. Then /() is a “regression func-
tion.” Methods of inference for the coefficients in a regression function are
useful in many branches of statistics. The cases which are peculiar to time series
analysis are those cases in which the quantities varying over time are known
functions of ¢.

Within the limitations set out we may distinguish two types of sequences in
time, f(¢). One is a slowly moving function of time, which is often called a
trend, particularly by economists, and is exemplified by a polynomial of fairly
low degree. Another type of sequence is cyclical; this is exemplified by a finite
Fourier series, which is a finite sum of pairs of sine and cosine terms. A pair
may be a cos 2t + Bsin At (0 < A < =), which can also be written as a cosine
function, say p cos (Az — 6). The period of such a function of time is 2/A;
that is, the function repeats itself after  has gone this amount; the frequency is
the reciprocal of the period, namely 1/(27). The coefficient p = +/a* + B>
is the amplitude and 6 is the phase. The observed series is considered to be
the sum of such a series f(¢) and a random term. Figure 1.1 presents
Y. =5+ 2 cos 2nt[6 + sin 27t[6 + u,, where u, is normally distributed with
mean O and variance 1. [The function f(r) is drawn as a function of a
continuous variable .] The successive values of y, are scattered randomly
above and below f(¢). If we know this curve and the error distribution,
information about ¥,,...,y,, gives us no help in predicting y,; the plot of
f(s) for s > ¢ — 1 does not depend on vy, ..., ¥, ;.

Such a model may be appropriate in certain physical or economic problems.
In astronomy, for example, f(¢) might be one coordinate in space of a certain
planet at time . Because telescopes are not perfect, and because of atmospheric
variations, the observation of this coordinate at time ¢ will have a small error.
This error of observation does not affect later positions of the planet nor our
observations of them. In the case of a freely swinging pendulum the displace-
ment of the pendulum is a trigonometric function p cos (Af — 6) when measured
from its lowest point.

One general model with the effect of time represented in the random part is a
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Figure 1.1. Series with a trigonometric trend.

stationary stochastic process; we can illustrate this with an autoregressive
process. Suppose y; has some distribution with mean 0; let ¥, and y, have the
joint distribution of y, and py, + u,, where u, is distributed with mean 0,
independently of y,. We write ¥, = py; + u,. Define in turn the joint distri-

bution of y;,¥s,...,¥%,1, %, as the joint distribution of y;, %, ...,¥, 4,
pY:_s + u,, where u, is distributed with mean 0, independently of y,, . . . , y,_,,
= 3,4,... . When the (marginal) distributions of u,, u;, ... are identical

and the distribution of y, is chosen suitably, {y,} is a stationary stochastic
process, in fact, an autoregressive process, and

(2) Ye = pYsa + Uy

is a stochastic difference equation of first order. This construction is illustrated
in Figure 1.2 for p = }. In this model the “disturbance” u, has an effect on y,

and all later y,’s. It follows from the construction that the conditional expecta-
tion of y,, given ¥y, ..., ¥, 4, IS

3) Ey, l Yis -+ s Yem1) = pYy

(In fact, for a first-order process y, and y, ,, ..., y; are conditionally inde-
pendent given y,_,.) If we want to predict y, from y,, . .., ¥,_, and know the
parameter p, our best prediction (in the sense of minimizing the mean square
error) is py,;; in this model knowledge of earlier observations assists in
predicting y,.

An autoregressive process of second order is obtained by taking the joint
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Figure 1.2. Construction of an autoregressive series.
distribution of ¥y, ¥s, - . - , ¥.1, ¥, as the joint distribution of ¥y, ¥s, . . . , ¥4,

P11 + pay, o + u,, where u,is independent of ¥y, 4o, . . . , ¥y 4, £ = 3,4, ...,
and the distribution of ¥, and y, is suitably chosen; graphs of such series are
given in Appendix A.2. Graphs of other randomly generated series are given by
Kendall and Stuart (1966), Chapter 45, and Wold (1965), Chapter 1. The
variable ¥, may represent the displacement of a swinging pendulum when it
is subjected to random “shocks” or pushes, #,. The values of y, tend to be a
trigonometric function pcos (dr — 0) but with varying amplitude, varying
frequency, and varying phase. An autoregressive process of order 4, generated
byy, = X5_i p¥i_ + U,, tends to be like the sum of two trigonometric functions
with varying amplitudes, frequencies, and phases.

A general stationary stochastic process can be approximated by an auto-
regressive process of sufficiently high order, or it can be approximated by a
process

q
4) D (4, cos At + B, sin A,
i=1
where A,, By, ..., A, B, are independently distributed with &4, = 6B, =0

and £A4% = &B} = $(2,). The process is the sum of g trigonometric functions,
whose amplitudes and phases are random variables. On the average the
importance of the trigonometric function with frequency 4,/(2w) is proportional
to the expectation of its squared amplitude, which is 2¢(4;). In these terms a
stationary stochastic process (in a certain class) may be characterized by a
spectral density f(2) such that [° f(A) dA is approximated by the sum of
#(4;) over A; such that @ < 4; < b. A feature of stationary stochastic processes
is that the covariance &(y, — &y )y, — &y,) only depends on the difference in
time | — s| and hence can be denoted by o(t — s). The covariance sequence
and the spectral density (when it exists) arc alternative ways of describing the




