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PREFACE

to the Third Edition

In response to suggestions from colleagues who have used the second edition of
Signals and Linear Systems in their courses and from students in our own classes,
we have made several changes in the presentation of topics in this text. As with
previous editions, we emphasize a unified view of linear systems analysis and
signal representations. It is our aim that the various approaches used to
characterize the interaction of signals with systems be interrelated to stress their
commonality, and not be presented as disjoint topics. Thus, we have retained the
overall organization of the second edition and continue to contrast difference/
differential equation models, convolution, and state-variable formulations in the
presentation of continuous- and discrete-time systems. Likewise, we present
transform methods with considerable attention given to relating them to the
corresponding time-domain techniques. ‘

Additional material has been devoted to applications of the theoretical material
in physical problems. Our aim in this respect is to help motivate classroom dis-
cussions of the relevance of this material to the students design activities.
Discussions of deconvolution were added to both the time-domain and transform-
domain treatment of discrete-time systems, with examples relating its relevance
to signal processing problems. The Fourier analysis material in Chapter 5 was
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vili PREFACE TO THE THIRD EDITION

augmented to emphasize the interrelationships among the discrete Fourier
transform, Fourier series, and the more general Fourier transform.

In the course of choosing the material and methods of presentation in this text,
we have carefully considered the advice of colleagues and reviewers. For example,
in the treatment of forced difference and differential equations, we considered
both the method of undetermined coefficients and the annihilator operator
approach. We chose the latter because it directly relates the solution of non-
homogeneous equations to the previously solved homogeneous case: it explains
well the special case of systems forced at their natural modes, leading to repeated
roots of the characteristic equation. It also ties the treatment together in a con-
sistent form (the solution mechanics of the two approaches involve, of course,
essentially identical calculations). We realize that individual instructors may
prefer alternative approaches in various topics: the chapter organization was
designed to make this substitution easy to accomplish.

It has also been suggested that we highlight Section 7.5, which deals with
hybrid systems of ADCs, DACs, and digital filters. This section is unique in
treating systems that contain both continuous- and discrete-time elements.
We generally cover this material in a summary lecture toward the end of our
course, with the remainder of Chapter 7 left to the students reading.

Finally, we have renumbered the examples and equations to better relate them
to the corresponding discussions. As previously, we are indebted to students and
faculty who have forwarded comments and suggestions concerning the pre-
sentation of this material. We welcome a continuing dialogue.

Robert A. Gabel
Richard A. Roberts



PREFACE

to the Second Edition

After communicating with a number of instructors who have adopted the first
edition of this book and after using it ourselves for several semesters we have
concluded that certain modifications would improve the presentation and have
incorporated them in this new edition. As in the first edition, we stress the relation-
ships among the various representations of a linear system: the difference or
differential equation model, the block diagram or flow graph form, the impulse-
response description, the state-variable formulation, and the transfer-function
characterization. We emphasize throughout the book that these representations
are tightly related and may be employed to great conceptual and computational
advantage in the analysis and synthesis of linear systems. The presentation of the
material is organized to enable the various topics to reinforce one another. New
results are related to those that have been mastered previously. Additional
examples have been incorporated to further illustrate the material as it is developed.
Several problems are presented using comparative solution approaches, so that
students may experience the various solution methods for representative applica-
tions. As previously, the material is general and chosen to lead naturally into
succeeding courses in communication systems, control systems, and other areas
that use these basic techniques in specific advanced applications. Prerequisites
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X PREFACE TO THE SECOND EDITION

assumed of the student are a sophomore-level course covering diﬂ”eren.tial
equations and a course in the student’s major area (such as circuits or mechanics)
that deals with the derivation of mathematical models of physical systems.

The most pronounced change in the second edition is the reorganization of
the time-domain material in Chapters 1 to 3. Whereas the first edition emphasized
most strongly the similarities between discrete- and continuous-time system
analysis, with different approaches in separate chapters, we have found the presen-
tation to flow more smoothly if the various analysis approaches are contrasted
within a body of material, with discrete- and continuous-time systems developed
in separate chapters. It is our experience and that of our colleagues who have
presented the material in both forms that students more readily perceive the
similarities between discrete- and continuous-time system analysis than they do
the relationships between, for example, analyses based on the system equation
solution, the convolution sum or integral, and the state-variable description. This
modified organization also allows the instructor to begin with either discrete-time
or continuous-time systems. (Our suggestion, reflected in the chapter ordering, is
to treat discrete-time systems first).

As an aid in motivating and interrelating the various approaches, we have
introduced the concept of the system frequency response at an early point in the
discussion. Evaluation of the frequency response is demonstrated with successive
system models as they are developed, rather than being relegated to a later section
of the transform domain discussion. This, we feel, is a major feature of the presen-
tation offered here, and one that has greatly enlivened our classroom discussions.

We discovered that adoptions of the first edition were primarily for electrical
engineering courses. Therefore and in line with the suggestions from users, we
have changed the Z-transform notation of Chapter 4 to correspond with the
standard used for publication in this discipline. Additional material concerning the
frequency response of digital filters has been included and related to the preceding
treatment.

Chapter 5 on Fourier analysis has been significantly revised and expanded to
include the Fourier analysis of discrete-time signals and systems. It also includes
new material on the implications of using windows in FIR filter synthesis,
numerical computation of Fourier transforms, and intelligent use of the Fast
Fourier Transform. This material serves to further integrate the student’s per-
ceptions of discrete- and continuous-time system analysis.

Chapter 7 on digital filter synthesis has been reorganized to more clearly
develop and contrast the standard design approaches. The material on mixed
continuous- and discrete-time systems has been placed to summarize the principal
developments in the text.

This book is used in a one-semester Junior course in linear systems analysis
at the University of Colorado. The course meets for a total of 40 lecture hours.
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In this time we cover most of Chapters | to 6 and selected portions of Chapter 7
as time permits. We present the material in the order given here, although other
choices are certainly possible. For example, Chapters 2 and 3 may be interchanged
if an individual would prefer to begin with continuous-time systems. Likewise,
Chapters 5 and 6 may be interchanged, and Z-transforms may be introduced after
Fourier and Laplace transforms, if desired. If time is a major factor, we recommend
that Fourier analysis be emphasized at the expense of Z-transforms and Laplace
transforms.

We thank sincerely the numerous instructors and students who have used the
first edition and who have given us suggestions for improvements. In particular,
we thank our colleagues, Llyod Griffiths and Tom Mullis, who have discussed the
material and its presentation with us at length and have contributed many of the
problems and examples.

Robert A. Gabel
Richard A. Roberts
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CHAPTER

LINEAR SYSTEMS

1.1 INTRODUCTION

The study of linear systems has been an essential part of formal undergraduate
training for many years. Linear system analysis is useful because, even though
physical systems are never completely linear, a linear model is often appropriate
over certain ranges of input—output values. A large body of mathematical theory
is available for engineers and scientists to use in the analysis of linear systems. In
contrast, the analysis of nonlinear systems is essentially ad hoc. Each nonlinear
system must be studied as one of a kind, since there are few general methods of
analysis.

The analysis of linear systems is often facilitated by the use of a particular
class of input signals. Thus, it is natural to include a study of signals and their
various representations in our study of linear systems. We shall find sinusoidal and
impulsive signals especially useful as system inputs.

As engineers, we are interested in the synthesis as well as the analysis of systems.
In fact, it is the synthesis or design of systems that is the really creative portion of
engineering. Yet, as in so many creative efforts, one must learn first how to analyze
systems before one can proceed with system design. The work in this book is
directed primarily toward the analysis of certain classes of linear systems. However,
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2 LINEAR SYSTEMS

because design and analysis are so intimately connected, this material will also
provide a basis for simple design.
We can divide the analysis of systems into three aspects:

1. The development of a snitable mathematical model for the physical problem
of interest. This portion of the analysis is concerned with obtaining the
“equations of motion,” boundary or initial conditions, parameter values, and
so on. This is the process of combining judgment, experience, and experiments
to develop a suitable model. This first step is the hardest to develop formally.

2. After a suitable model is obtained, one then solves the resultant equations to
obtain solutions in various forms.

3. One then relates or interprets the solution to the mathematical model in terms
of the physical problem. Of course, meaningful interpretations and predic-
tions concerning the physical system can be made only if the development
in the first step has been accurate enough.

The primary emphasis of this work is on the second and third aspects just
mentioned. The first step is essential but is accomplished more completely and
appropriately within a particular discipline. Thus, chemical engineers will learn
to write equations of motion for chemical processes, electrical engineers for elec-
trical circuits, and so on. After a model is obtained, one can consider various
techniques for its analysis and provide a basis for its mathematical interpretation.

Because linear models are so often used in all disciplines of engineering and
science, this material is very useful. Perhaps the best way to point out this fact is to
present examples from various physical problems. The only drawback to this
method is that the reader may not always possess the necessary background to
perform the first step in the analysis, that is, to write the equations of motion. This
problem is to be expected. As one gains familiarity with a given discipline, this
first step becomes natural. We shall use linear models based on electrical engineer-
ing applications for the most part. Certain problems at the ends of the chapters
present physical examples from other disciplines.

We shall present several models for analyzing linear systems. Each model is
useful in its own right, but together they present a more complete view of linear
systems. By considering these different techniques, we hope to unify the reader’s
view of the subject.

1.2 CLASSIFICATION OF LINEAR SYSTEMS

A system is a mathematical model or abstraction of a physical process that relates
inputs or external forces to the output or response of the system. Input and output



CLASSIFICATION OF LINEAR SYSTEMS 3

share a cause—effect relationship. There are several classifications or types of
systems. . )

A causal or nonanticipatory system produces an output that at any time t, is a
function of only those input values that have occurred for times up to, and includ-
ing, to. In other words, the system does not respond to input values until they have
been actually applied to the system. Stated in this way, it appears that all real
physical systems are causal. We shall show, however, that one can use noncausal
systems in many applications.

The state of a system is a fundamental concept. The state is a minimal set of
variables chosen such that if their values are known at time ¢, and all inputs are
known for times greater than t,, one can calculate the outputs of the system for
times greater than t,. The state of a system can be thought of as the system’s
memory. The memory at any time t, summarizes the effect of all past inputs and
any initial state or memory. ‘

The input, state, and output are, in general, sets of variables that we shall rep-
resent as vector quantities. For example, an n-variable input is written as

uy(t)

u,(t)

u(t) = (1.2.1)

uy(t)
We use u, y, and x to denote input, output, and state variables, respectively.
Different vectors of the same class are distinguished by superscripts, for example,
u!, u?, and so on.

We shall be concerned here with both continuous and discrete-time systems.
Continuous-time systems are systems for which the input, output, and state are all
functions of a continuous real variable t. We shall also study systems in which the
time variable is defined only for discrete instants of time Iy, where k is an integer.
In this case, the system is called a discrete-time system.

We shall denote a function of continuous time by f() or, in cases where no
confusion would result, merely by f. Its value at 1 is S(¢). Similarly, a discrete-time
function is denoted as f(k) (or f), and its value at t = t, = kT by any of the notations
S) = fkT) = f(k) = f,. Notice that f(k) is itself a continuous variable—only
its argument is discrete. Discrete-time functions are commonly called time sequen-
ces or merely sequences. Thus, an input sequence of n variables may be denoted as

uy (k)
u(l) = u = | “2¥ (1.22)
il

Our models of physical systems are restricted to constant parameter systems.
That is, we shall assume that parameters of the system do not change with time.
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This leads to the idea of time-invariant and shift-invariant systems. A time-
invariant, continuous-time system can be characterized as follows. If an input
u(t) gives rise to an output y(t), then a shifted version of the input u(t + 1) gives
rise to an output y(t + 7). Similarly, for a shift-invariant, discrete-time system, if
an input u(k) produces an output y(k), then u(k + n) produces an output y(k + n).
This is another way of saying the system response does not depend on the time
origin but only on the form of the input.

We shall, in the sequel, consider linear, time- (or shift-) invariant systems.
These systems are most often characterized by linear differential (or difference)
equations with constant coefficients. These are our basic models for continuous
and discrete-time systems, respectively.

1.3 LINEARITY

We have classified systems in several ways. One of the most important concepts in
system theory is linearity. What precisely is a linear system? Linear systems possess
the property of superposition. That is, if u' produces an output y! and u? produces
an output y?, then an input (u' + v?) produces the output (y' + y2). In symbols,
if

1 1

u —y
and

u? - y? (1.3.1)
then

u1 + u2 — y1 + y2
for some class of inputs w’, j = 1,2, . ... Superposition also implies that if
u-—y
then (1.3.2)
ou - ay, « a rational number

This latter property is called homogeneity if it is true for all «.
A convenient notation for the arrows in (1.3.1) and (1.3.2) is to ‘use functional

notation and represent the system as a transformation T of inputs u into outputs y.
A system is linear if T satisfies

T(aw' + Bu?) = aT(u') + BT(w?) (1.3.3)
where o and § are arbitrary constants. Some examples of how to verify whether or
not a system is linear follow.
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@ Example 1.3.1
Suppose a system has an input—output relation given by the linear equation
y =au + b, a, b constants 1.34)
Does this equation represent the input—output relation of a linear system? We can
write (1.3.4) in the form
y=T(u)=au+b
Consider two inputs u' and u?. The corresponding outputs are
T(u') = au' + b
T(w?) = au? + b
Now apply an input (u' + u?). The output is
T(u' + w?) =a(u' + ud) + b
But notice that
Tw') + T(w*) = au' + b + aw® + b
= a(u' + u?) + 2b

# T(u' + u?)
Therefore, the system is not linear! The problem is that b is added to au. This
offset at the origin destroys the superposition property. |

B  Example 1.3.2

Consider the discrete-time system represented in Figure 1.3.1. The block diagram
contains a unit-delay element, a multiplier of value §, and a summer. The delay
element is a device that holds the previous value fed to it, in this case the previous
value of the input. The equation for the output is

1
wk) = 5 uk) + ulk — 1) (1.3.5)
Unit ulk —1)
delay
+
+
TN |
A\ ulk)/2

FIGURE 1.3.1 Block diagram for example 1.3.2.



