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Preface to the Revised Printing

Electromagnetic Fields has been out of print for fifteen years now. When the
book first appesred in 1964, its main objective was to apply to electromagnetie
problems such powerful mathematical tools a$ variational principies and Green’s
dyadics. Though widely used in mathemnticsl physics, they were not particularly
familier to the eloctromagneticist of the sixtiel. Some of thest methods have
since made grea progress in thelr numerical implementstion, while new
analyt.cal procedures have come to the fore. The original vemion, however, is
believed to contain enough fundamental data and reference material to warrent
its present reappesrance, which was made possible by the efforts of both Dr.
Carl Baum and the Hemisphere Publishing Corporstion. The suthor hopes that
the hook will remain useful as a text for graduate courses in physies or electrical
engineering, and as a research tool for scientisis in government, indostrial and

university laboratories. May this opinlon be shared hy the electromagnatics
community!

Ghent, December 1984 J. Van Bladel



Preface

The present book deals with the calculation of electric and magnetic fields
in the presence of ponderable bodies at rest. This is an old subject, but
one which has enjoyed a considerable resurgence of interest in the last two
decades, mainly because of the development of microwave devices. The radio
engineer, faced with the necessity of understanding the operation of these
devices, soon discovered that his traditional background was insufficient for the
purpose. In fact, the solution of the exciting new theoretical problems which
stemmed from the early developmend of radar was oftan effected by nuclear
physicists, already well-irained in the necessary mathematical techniques.
The use of these techniques is now a matter of routine in the radio technical
literature. It is against this background that the present book has been prepared.
Its writing has been guided by the following two thoughts: '

1. The desirability of injecting lively illustrative examples from the very recent
literature;

2. The decision to use elgenfunction expansions and other mathematical
methods throughout the book, even in such timeworn subjects as electro-
statics and magnetostatics.

Xy



xvi Preface

The subject of this volume in all of its modern developments is a broad one,
and the author has been compelled to prune severely, often at the expense of
completeness. In the selection of iopic:, an attempt has been made to aim
at an “ntermediate” level: that is, elementary applications such as plane waves
are ireated very lightly, while some of the more advanced topics are not
included. A few of these are Wiener Hopf techniques, fields in periodic
structures, multibody scattering, and applicaiions of the reaciion method A
number of important subjerts, such as conformal mapping and geometrical
optics, are given the briefest of treatments. Also largely ignored is the problem
of obtaining macroscopic field quantities from microsecpic fizlds,

A text on mathematical physics such as this conrsiders mathematics as
a tco: and not as a goal. Thus, rigorous justification of a certain number of
steps ‘s omitted (particularly in potential theory), but not without inclusio: of
suitable references. Occasionally, and this is the case Jor Dirich® s and
Neumann’s problems, an existence proof is given :oca. se 1 18 wugsistive o
useful numerical method of solution. Detailed calcuizi.. ns of comp. = tegrals
are generally avoided, because of their length, but here again references to the
original papers are provided. Numerical results are frequently included tc add
flavor to a formal solution. This is done, in particulay, for the integral equaiion.
of potential theory and for those of two-dimensional scatiering,

Part «f the material irciuded in this volume has been used in a graduate
course in electrical engineering, taught both at the University of Wiseconsin
and, during the academic year 1962-1963, st the Royal Institute oi Tecn-
nology, Stockholm. As more and more schools upgrade their undergraduate
curricula, graduate courses in electromagnetic fields are permitted to increase
their mathematical content. The author hopes that the present book will be
of service during this period of evolution and that it will also find an audience
as & companion voiume to t:xtbooks used in courses in theoretical physics and
applied mathematics. It is also hoped that physicists and electrical engineers
employed in industrial and government laboratories will find the text valuable
as a tool in their research. For such use, the book has been made self-contained
(to the extent of including a summary of compiex-variable theory) and has
been enriched by a fairly abundant collection of formulas, selected admittedly
on the basis of the author’s personal experience.

The author wishes to ackmowledge the assistance given by Professors
Thomas J. Higgins and John L. Asmuth, who read the manuscript in its initial
stages. Thanks should also be expressed to Professor Calvin H. Wilcox, who
checked the accuracy of the mathematical statements in some of the chapters.
The finai version of the book was prepared while the author was supported by
the Guggenheim Foundation and by the Research Committee of the University
of Wisconsin. The help of these organizations is gratefully acknowledged.

J. Van Bladel
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Linear analysis

1.1 Linear spaces

The linear equations of mathematical physics can be solved by methods
which are independent of the branch of physics (electrostatics, hydro-
dynamics, acoustics, ete.} in which the equations are encountered. It is
instructive. therefore, to describe these methods in very general and abstract
terms. Such an approach is both intellectually satisfactory and economical,
for it avoids tedious repetition of steps that are essentially the same for
" each new equation which is encountered. To illustrate the abstract con-
cepts of linear analysis, reference will often be made to the equations of the
flexible string, which constitute a simple and almost trivial example of a
linear problem. The static displacement of a string subjected to a uniform
longitudinal tension 7" and a vertical force density g(x) satisfies the differen-
tial equation (see Fig. 1.1)
Ty, @
de2 T
Two different types of bound,a‘l"y:cond;tions will be considered. They
correspond to ' o C

(1.1)

1. The clamped string, where the displacement y(x) vanishes at both ends,
z=0and x =1

;l

§6850053
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2 Eleciromagnetic fields

2. The sliding string, which is free to slide vertically at both ends but is
constrained to keep zero slope therv.

I
|
|
i
|
B
I
{

(a) Pigure 1.1 Clamped string and sliding

string

®)

Ococasional reference will also be made to the equations of the loesless
transmission line, in which voltage and current satisfy

ov o o ov
5;.—:-—-L-a—t+va 5;—':-05 (1-2)

Here L and C denote the linear inductance and capacitance of the line, and
v, denotes the applied voltage per unit length (see Fig. 1.2). When phe-
nomena are harmonic in time, v(z,t) and. ¥(z,) can be obtained from a
knowledge of the phasors V(z) and I(z). Typically,

v(z8) = Re [V(z) ]
The phasor voltage satisfies the equation

- av av,
LMoV =218 )
i + WALOV . | (1.3)
Figure 1.8 Open transmission line
v ¢ “with series voltage sourcs
:‘30 s?l

which must be supplsmented by the end conditions I =0 an ' ..V/de = 0

- for an open line, and dI/dz = 0 and V = 0 for a short-circunited _.ne.
‘ The field quantities which appear in a linear problem possess mathe-
" matical properties dictated by the physical nature of the phenomenon under
investigation. The dieplacement of » etring, for éxample, must be s continu-
ous function of 2. The electric field near a metallic edge must be square-
integrable. 1In general, the riature of the problem requires the field quantities
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to belong to & lineaw space &, that is, to a collection of elements f for which
addition and multiplication by a scalar have been defined in such & manner
that

. Addition 2nd multiplication are commutative and associative.

. These operations areate an element which is in &,

. The product of f and the scalar 1 reproduces f.

. The space cantains & unique null or zero element 0 such that f 4 0 = f
and f-0 = 0.

5. To each f there corresponds a unique element —fsuch that f + {—f) = 0

b

The space of three-dimensional Euclidean veotors ia obviously a linesr space,

Another is the space of complex-valued functions which are Lebesgue---

measurable and square-integrable in a given domain. This space is denated
by the symbol #2 (Ref. 59).

In an abstract space &, the scalar product (fg) of two clemyents is »
scalar-valued function which has the properties

f) = @n*

(af, + bfy, 9) = a*(f14) + bi(fvﬂ {1.4) -

H>0 i f#0

i
where an asterisk denotes complex conjugate. The integral fyly, dz, for
example, is a suitable scalar product for the real displacements of a string;

the complex integral fV, Vydz is a suitable product for the complex

voltages along a transmission line. Two elements are said to he orthogonal
when their scalar product is zero.

The next step in establishing the structure of a linear space is to define
the norm of an element. The explicit definitian of the norm depends on the
kind of space under consideration; a frequent choice is ff§ = (f,/)!. The
distance between two glements f and g is the norm ||f — g}l of their differ-
ence. A sequence of elements f, belonging to & converges in the Cauchy
sense when the distance between any of its elements approaches zero as the
index » approaches infinity. The apa&oe is complete when every Csuchy
sequence oconverges to a limit which is also in .

Let us apply these concepts to the problem of the hnbb string

suitable norm for this problem is ( f y‘dz), and the condition lor oon-

J
vergence of y, to y is that ( vy — 9,0 d:c) approaches zero for large
values of n. With this type 0&' n':)rm the Epne of continuous real functions
is not complete (because the limit function can be discontiruous), but the

space £ of Lebesgue-square-integrable fynotions is complete (Ref. 59).
A scalar-product space which is infinite-dimensional and complete is termed



4 Elactromagnetic fields

a Hulbert space. This is the type of space which will be considered in this
book.

Two additional definitions are worth noting here. A subset of elements
of & forms a linear manifold when it contains all linear combinations of any
two of its elements. It is, in addition, a subspace when it contains the
limit of any converging sequence of its clements. For example, the dis-
placements of a string which are symmetric with respect to the center of the
string constitute a subspace. It is interesting to remark that an arbitrary
displacement can always be decomposed into a symmetric part and an
antisymmetric part. This decomposition is unique, and the two terms of
the “splitting” are mutually orthogonal. This property represents a par-
ticular case of the more general projection thereom, which states that if # is
a subspace of &, and f is not in .# there exists a splitting f = v + w such
that v (termed the projection of f on .#) belongs to .4, and w is orthogonai
to all elements of .#4.

1.2 Linear transformations

The basic problem associated with the clamped string is to determine the
displacement y(x) due to a given forcing function g(r). We shall assume
that g(x) is piecewise-continuous. The string problem is a particular case of
the more general problem )

Lf=yg (1.5)

where # 13 an operator mapping the space of elements f (the domain) into
the space of elements Zf (the range). This mapping is a transformation:
In the clamped-string problem, the domain consists of those functions which
are continuous in (0.l), vanish at 2 = 0 and v = I, and have piecewise-
continuous second derivatives in (0,]). A transformation is linear when it
is additive and homogeneous, that is, when £(f, + f,) = .£f, + £f, and
ZLlaf) = af. These properties imply (1) that the operator is linear and
(2) that the domain is a linear manifold. The transformation associated
with the clamped-string problem is obviously linear. The transformation
assoclated with the inhomogeneous boundary conditions ¥y =1 at z = 0
and y = 3 at-x = ! is not linear. The reason is clear: The sum of two
possible displacements takes the values y=2atzr=0andy==6atxr=1
These are not the values required by the botﬂldary contfition; hence the
latter does not define a linear manifold.

Consider again the linear problem defined by Eq. (1.5), together with
the requirement that f belong to a Lnear manifold #. The solution of this
problem is greatly facilitated when a linear operator .#, a scalar product
(f.g), and a domain 5# can be found such that

(LLh) = (f, M) (1.6)

whenever 4 belongs to #°. The linear transformation defined by operator
A and domain J# is the adjoint of the original one. In the -ase of the
clamped string, the left-hand member of Eq. (1.6) can be transformed by
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integrating by parts. One obtains

ki " d%h df dhj"

(.?f,h)zj;a—zhdx =J0f@dx+ [hd—x_ = (L7)
It is seen that Eq. (1.6) is satisfied if one chooses .# to be the differential
operator d2/da?, and the domain J# to consist of functions which are zero at
z = 0 and x = [ (whereby the bracketed term in Eq. (1.7) vanishes] and
which possess piecewise-continuous second derivat:ves. Clearly, the adjoint
of the ciamped-string transformation is the transformation itself, which is
therefore termed self-adjoint. Self-adjoint transformations occur very fre-
quently in mathematical physics. They have remarkable properties which
will be examined in more detail in subsequent paragraphs.t

The pattern suggested by Eq. (1.7) is frequently encountered in mathe-
matical physics. In general, the scalar product is an n-dimensional integral.
The equivalent of Eq. (1.7) is obtained by using a suitable Green’s theorem
in n-dimensional space, in which the bracketed term is replaced by an
(n — 1)-dimensional integral, linear in f and A, which is termed the bilinear
concomitani. The domain # is determined by the requirement that the
bilinear concomitant vanish. Note that scalar product (¥4 is also linear
in f and A, which implies that (Zf.f) is a quadratic form in f. This can
casily be checked for the clamped string, where

In this case, the quadratic form is real. This property holds for all self-
adjoint transformations in a Hilbert space. We note, indeed, that the
properties of thg scalar product in a Hilbert space imply that

: (L) = (f.Lf)*
On the other hand,
Sf)* = (Lhf*

because of the self-adjoint character of the transformation. Comparison
of these two equations shows that the quadratic form is equal to its con-
Jugate, hence that it is real.

The quadratic form of the clamped string has the additional property,
evident from Egq. (1.8), that it is negative or zero. The same is true for the
quadratic form of the sliding string. The corresponding transformations
are tered nonpositive. In the case of the string the vanishing of the
quadratic form (#f.f) implies that df/dz = 0 at all points of the interval
(0,f). This, in turn, requires f{z) to be a constant. For the clamped string,
this constant must be zero because of the end conditions. The corresponding
transformation is termed negative-definite, which means that it is a non-
positive transformation whos: (#7,f) 1s always negative for nonzero elements

t Non-self-adjoint transformations are more difficult to treat. See, eg., C. L.

Dolph, Recent Developments in Some Nonself-adjoint Problems of Mathematical
Physic., Bull. Am. Math. Soc., 87(1):1-69 {1961).



6  Electromagnetic Selde

f-and vanishes for, and only for, the zero slement. The wrensformation
associated with the sliding string is not definite, because (Zf.f) =0 is
satisfied by f = const, a nonzero function which belongs 30 the domain of
the transformation.

<

1.8 The inversion problem

A very fundamental problem concerning a linear transformation is snversion,
that is, finding an element f of the domain such that &f = ¢, g being given.
This inverse transformation can be represented symbolically as f = ¥-1g.
Two questions immediately arise:

1. Is there an inverse?
2. Is that inverse unique?

The question of uniqueness can be answered simply. Assume that there
are two distinct solutions, f; and f,. These solutions satisfy the equations

Lh=9 =9

Subtraction of corresponding members shows that the difference fo=
f1 — f, must be a solution of the homogeneous problem

Zf,=0

If this problem doesmot possess a nonzero solution, f, and f, must be equal,
and the solution of the original inhomogeneous problem is unique. If, on
the other hand, the homogenecus problem has linearly independent solu-
tions fo, foa, - - -+ Jou» the solution of #f = g is determined to within an
arbitrary linear combination of the f,’s. '

To apply these notions to the clamped string, consider the homogeneous
problem

"il—'-:;=0 yoz()atz:odnd:c:l

In this simple example, two successive integrations are sufficient to show
that the only solution is y, = 0. The same result can be obtained in an
indirect manner, frequantly ysed for nonpositive or nonnegative transforma.
tions. The method consists in evalusting (Zf,.f,). For the clamped string, -

o[ Btwee= 2] - (] (8]

Clearly, £f, = 0 implies that (£f,,f,) = 0, which in turn requires the first
derivative dy,/dz to vanish. For a clamped string, this impliea that y, is
zero. The physicsl interpretation is obvious: The clamped string without
forcing function remains stretched along the z axis. For the sliding string,
on the contrary, the homogeneous problem has the nonzero solution y, =
const. This means that the average height of the string is not defined or,



