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PREFACE

This book is the outcome of a course on martingales and estimation theory
being given since the fall of 1977 by the author at the Indian Institute of
Science, Bangalore, to engineering graduate students with a basic knowledge of
probability theory. The continued rapid advances in the martingale approach
to filtering and smoothing problems made it necessary to give the engineering
students a clear physical understanding of the fundamental concepts in this
area. As a consequence, applicational aspects have been stressed throughout
the book. Starting with the basic concepts of probability and stochastic
processes in Chapters 1 and 2, martingales and square integrable martingales
have been introduced in Chapters 3 and 4. Chapter 5 covers white noise and
white noise integrals with an introduction to Fourier transforms and spectral
measures. Chapters 6 and 7 deal with stochastic integrals and stochastic-dif-
ferential equations and the associated Ito calculus and extensions to the Ito
calculus. Differences between white noise differential equations and the corre-
sponding stochastic differential equations have been clearly brought out. After
having defined the Stratonovich integral, the correction terms needed for
computational purposes to convert the Ito stochastic differential equation to
the Stratonovich form have been derived. Chapter 8 contains the derivation of
optimal nonlinear filtering representation in a form slightly different from that
of the classic work of Fujisaki, Kallianpur, and Kunita (15). At this stage it
was felt necessary that some time ought to be spent on the classical Kaiman
filter (optimal linear Gaussian nonstationary filter), the heuristic derivation of
which is contained in Chapter 9. In the same chapter the Kalman filter has
been derived as a special case of the general nonlinear filtering representation.
In Chapter 10 fault detection problems using the nonlineacfiltering representa-
tion are considered, and Chapter 11 contains some of the results of the work
on smoothing problems carried out by the author and his students during the
-early seventies.

vii



viii PREFACE

This book is written by an engineer for engineers. As far as possible, the
physical understanding of the problem has been stressed, and as a result
rigorous mathematical proofs have in some cases given way to heuristic proofs.
Rigorous proofs have also been given and in some of those cases they lead to a
better physical understanding of the problem. In some other cases proofs have
been referred to other textbooks. This book has been class tested for the past
several years, and the generous feedback from colleagues and graduate stu-
dents from two continents has helped the author to present it in this particular
form.

During the preparation of this book the two-volume work by Lipster and
Shiryaev (34) and the book by Kallianpur (29) have appeared on the market.
This book follows the same martingale approach to filtering and smoothing
problems as these other two books, but the presentation is kept at a lower level.
A third book by Bremaud (5) on point processes has also appeared on the
market. This book also carries some aspects of point processes, but again at a
lower level of presentation. It has been the intent of the author to give a
concise physical understanding of the principles of martingales, stochastic
integrals, and estimation theory from an applicational point of view at a level
where an engineering student with a basic probability theory background can
comprehend. For more intensive studies, including mathematical rigor, the

‘student can refer to the books mentioned above. Selected probleris have also
been included at the end of every chapter to enhance the utility of the book.

The references given at the end are by no means exhaustive, but only reflect
the relevance they bear to the material in the book.

In writing this book the author has been greatly 1nﬂuenced by the now
classic works of Wong, Kailath, Kallianpur, Segall, and Lipster and Shiryaev.
He has freely drawn on their works and would like to express his scientific debt
of gratitude to these authors.

This book could not have been written but for the direct and indirect
support obtained from many sources in India and in the U.S.A. The author is
thankful to the students who took the course and suggested many improve-
ments. In particular, he would like to mention J. Viswanathan, C. E.
Venimadhavan, K. R. Ramakrishnan, and H. S. Jamadagni for technical discus-
sions on the material of the book. S. L. Yadav of the Tata Institute of
Fundamental Research, Bangalore, gave him suggestions for improving the
clarity of presentation of earlier chapters. He is thankful to Professor Joseph L.
Hibey of the University of Notre Dame and Dr. Wolf Jachimowicz of WBC
Extrusion Products, Lowell, for the long hours spent in formulating the fault
detection problem and the painstaking discussions on the clarity of its presen-
tation. He is indebted to Professor Harold J. Kushner and Professor Thomas
Kailath for their critical review and excellent suggestions for improving the
quality of presentation. He appreciates the support given to him by  Herb
Sandberg and Allen Dushman by extending him facilities at the Dynamics
Research Corporation, Wilmington, Massachusetts, for finishing parts of the
book. He also appreciates the facilities extended to him at the University of
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Lowell and the facilities provided for him by the Indian Institute of Science,
Bangalore. He is thankful to the Ministry of Education and Culture, Govern-
ment of India, who gave him financial assistance through the Cufriculum
Development Cell established at the Indian Institute of Science for the
preparation of the initial manuscript. The preparation of the final manuscript
was self-supported.

The author places on record with a deep sense of appreciation the unstinting
cooperation given by B. Seshachalam who involved himself enthusiastically in
this project from the beginning and superbly typed the initial and the final
manuscripts and the many revisions in between. He is also thankful to G.
Krishnamurthy for the art work.

During the preparation of the final manuscript 1 faced extremely difficult
times. During this difficult and trying period, my wife, Kamala, my daughters,
Gayathri and Hemalekha, and my mother were a constant source of inspira-
tion to me with their unwavering support, without which this book would
never have seen the light of day. It is fitting that I dedicate this book to them. I
am also grateful to Professor S. V. Rangaswamy of the Indian Institute of
Science, who helped me over some of the difficulties.

Finally, I acknowledge with.great pleasure the constant encouragement
given to me by David Kaplan and the Wiley staff; their skills in transforming a
rough manuscript into a finished book amazes me.

gezad ATE ¥ q@ W SR
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Bhagavad-Gita
Canto X1

VENKATARAMA KRISHNAN

Lowell, Massachusetts
November 1983
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1 BASIC CONCEPTS OF
PROBABILITY THEORY

1.1 INTRODUCTION

Probability theory is the mathematical study of phenomena occurring due t{)'
chance mechanism. If we toss a coin, we cannot say a priori whether we will
get heads or tads. Outcomes of a random experiment can be analyzed or
modeled only in an abstract manner. A random experiment or a mathematical
experiment is one in which the possible outcomes may be finite or infinite. In
the experiment of tossing a coin there are two outcomes, heads and tails. In the
tossing of a die there are six outcomes. On the other hand, the weight of a
full-term new-born baby may vary continuously from 4 to 10 pounds. Each of
these outcomes is known as an elementary outcome. The collection of all
elementary outcomes of a random experiment is called sample space and is
denoted by . In set terminclogy the sample space is termed the universal set.
Thus, the sample space  is a set consisting of mutually exclusive, collectively
exhaustive listing of all possible outcomes of a random experiment. That is,
@ = {w), @p,...,w,} denotes the set of all finite outcomes, & = {w,, w,,...}
denotes the set of all countably infinite outcomes, and £ = (0 <t < T)
denotes the set of uncountably infinite outcomes, -

12 ALGEBRA OF SETS
Let Q represent the sample space which is a collection of w-points as defined

earlier. The various set operations are (1) complementation, (2) union, and (3)
intersection. Let A and B be two subsets of the sample space 2, denoted by



2 BASIC CONCEPTS OF PROBABILITY THEORY

A C Q, B C Q. The complement of 4, denoted by A€, represents the set of all
w-points not contained in A: ’

A= {w: we&A) (1.2.1)

Evidently the complement of @ is the empty set @. Two sets 4 and B are equal
if and only if A is contained in B and B is contained in A:

A=BeACB and BcCA (1.2.2)

The union of sets A and B, denoted by A U B or 4 + B, represents the
occurrence of w-points in either 4 or B. Similarly, the interseciion of sets A
and B, denoted by 4 N B or AB, represents the occurrence of w-points in A
and B. Clearly, if there is no commonality of w-points in 4 and B, then 4 N B
is the empty set @, '

AUB={w: wed or we B}
ANB={w: w€E€A and w€E B) (1.2.3)

Example 1.2.1

Let © be the w-points on the real line R.
Q= {w: -0 <w< o0}

Define
' A={w: we(-w,a)}={w<a)

B={w: we(bc)}={b<w<c)
Then the set operations yield
| A= {a<w < w)

B‘={—oo<wsb}u{c5ap<oo}

] [ {0 <a) c<a
AUB=|{w<c} b<a<c
| {w<a}u{b<w<c) a<b
 [{p<w<c} c<a
" ANB= {b<w<a} b<a<c
| 2 a<b

The unions and intersections of an arbitrary collection of sets are defined by

U 4,={w: wed4,forsomene N)
neN

NA4,={w: wed,forallneN)
neN - 7 -

(1.2.4)

-

where N is an arbitrary index set which may be finite or countably infinite.




1.2 ALGEBRA OFSETS 3

The unions and intersections follow the reflexive, commutative, assocxauvc,
and distributive laws.

The complements U, yA,)° and (N, y4,)° are given by de Morgan’s laws
as follows:

( U An) = {w: wdoesnotbelongtoanyd,,ne N}

neN

{w: we&Ad, forallne N}
= () 4 (1.2.5)

nenN

( N A,,) = {w: wdoes notbelorigto each and every 4,,n € N }

neN

= {w: w does not belong to some 4,,n € N }

= |J 4 - (1.2:6)

neN
Sequences

A sequence of sets A,, n € N, is increasing if A, ., D A, and decreasing lf
A, CTA, foreveryn € N.

A sequence which is either increasing or decreasmg is called a monotone
sequence. We can write the limits (N countably mﬁmte) of monotone se-
quences as

' 0
lim 4, = lim,4, = |J 4, = 4 increasing
n— o e
' (12.7)

o0
lim A, = lim,4, = () A, = A decreasing

R 00 nel

The limit of monotone sequences {A,} is written as A, 1 A when it is
increasing and A4, | 4 when it is decreasing.

Example 1.2.2

Let Q be the real line R. If 4, = {w: O <w<a—1/n}, then 4,14 =
{w: 0<w<a}. On the other hand, if B, = {w: 0 <w <a+ 1/n}, then
B |B={w 0<w<a)l :

We can define a superior limit and an inferior limit for any sequence { 4, }
not necessarily monotonc. We first: define sequences { B, } and {C,} derived
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from { 4, } as follows:

B, = sup A, -UAk

n
k=n =n

{w: w belongs to at leastoneof 4, A, 1,...} (1.2.8)

C,=infA, = nAk

k=n

= {w: wbelongs to all 4, except 4,, 4,,...,4,_;} (1.2.9)

Clearly the sequences {B,} and {C,} are monotone and decreasing and
increasing, respectively. We can now define a limit from eq. 1.2.7 for these
monotone sequences:

o 0
hmB—hmB ﬂB,,=ﬂ U 4,

B =
n—woo - on=1 nml k=n
= lim supA, = limsup, 4,
= {w:  belongs to infinitely many 4,, }
00 . o
C=lim C,=1lm,C,= U C = N4,

C h— n=1 n=1 kwl

lim inf 4, = liminf, 4,

n—>o0

]

= {w: w belongs to all but a finite number of 4,, }

.

Hence
limsup, 4, 2 liminf, A4,

If limsup, 4, = liminf, 4,, then {A4,} is a convergent sequence and lim, 4, =
A, say, exists, that is,

lim sup, 4, = liminf, 4, = lim, 4, = 4 (1.2.10)
Example 1.2.3

Let A, be the set of points (x, y) of the Cartesian plane R2 in the region
{05x<k 0$y<1/k} that is,

Ak={x,yER2: 05x<k,0$y<%}

Here { 4, } does not belong to the monotone class.




1.2 ALGEBRA OF SETS

But-

e 1
B = UAk={x,y€R2: 05x<oo,05y<;}

k=n®

is a decreasing sequence, and hence

00 .
B=1lim,B,= (VB,={x,y € R: 0<x<o0,y=0}=limsup,A4,

n=1

Similarly,

% . i ,
C,.= ﬂAkz{x,yERZ: 0$x<n,y.—.-0}

k=n

is an increasing sequence, and hence

- |
C=1m,C,=JC={x,yeR: 0=<x<c0,y=0}=liminf, 4, '

n=1

5

Since limsup, 4, = liminf,B, = {x, y € R* 0 < x < o0, y = 0}, we have

lim,,A,,'=B=C=(x,yeR2; 0<x<oo,y=0}.

Examplé 1.24

Let {2 be the positive real line R*. Consider the sequence

: n
An={w€ﬂ: O<w<a:+-(—‘nl—)>

Here
we 0<w<a+-1—,neven}
- v n
B, = ' 1
{weﬂ: 0<w<a+m,nodd}
‘ limsup,4, = {w € Q: 0<w<=<a}
Similarly '
{weﬂ: 0<w<a-—%,n-odd}
C, =
{969: 0<w<a—m,neven}

liminf 4, = {w € Q: 0<w<a}
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Since hm sup, 4, # liminf, 4,, the sequence { 4,} does not converge and
has no limit.

-~ Even though the limit of a sequence may not exist, superior and inferior
limits will always exist, as is evident from the definitions.

13 FIELDS, o-FIELDS, AND EVENTS

We define @ as the nonempty class of subsets drawn from the sample space €.
We say that the class & is a field or an algebra of sets in Q if it satisfies the
-following definition.

Definition 1.3.1 Field or Algebra

A class of a’ collection of subsets A; € Q denoted by (1?. is a ﬁeld when the
following conditions are satisfied: ;

1. IfA,.E@,thenA‘GC‘B o ‘ ,
2. If{4,=i=12...,n) €@ thenU_, 4, € Q. S (13)

Given the above two conditions, de Morgan’s law ensures that finite
intersections also belong to the field. Thus a class of subsets is a field if and
only if it is closed under all finite set operations like unions, intersections, and
complementations. Since every Boolean' algebra. of sets is isomorphic to an
algebra of subsets of Q, we can also call the field a Boolean field or Boolean
algebra. Every field contaihs as elements the sample space  and the empty set
a.

Example 131

Let € = R and consider a class @ of all intervals of the form (a, b}, that is,
{xE€R: a<x = b}:

(a,b]ﬂ(c,d]—‘- a<b<c<d

|
- Q

(c, B] a<c<b<d
= (a, d] c<a<d<b
=(c,d] a<c<d<b

=(a,b] c<a<b<d
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Clearly the class @ is closed under intersections. However,
(a,b) = (—o0,alU(b,0) & @
(a,b]U(c,d) e @ | ifa<b<c<d
The class & is not a field.
Example 1.3.2

The smallest field containing 4 C Q is
Q= (2,2, 4, A4°)

If a class of subsets is closed under finite set operations, it does not
necessarily mean that it is also closed under countably infinite set operatlons
Very often- we come across the sequence of sets {A;} as n - oo and the
convergence of such sequences (limsup,4,, liminf, 4, ). In Example 1.3:1 the
class @ is closed under finite intersections. If we now take countably infinite
intersections, ﬂ,,_l(a ~ 1/n, b] = [a, b] &€ @. If a class of sets § drawn from
the sample space § is closed under all countably infinite set operations, then
that class ¥ is called a o-field or o-algebra

Definition 1.3.2 a-Fie_ld or o-Algebra

A class of a countably infinite collection of subsets A, C £ denoted by ¥ is a
o-field when the following conditions are satisfied:

1. If4,€%, thend; € F.
2. If{A,i=12,...} €9, thenU2, 4, €.

In general a o-field is a field, but a field may not be a a-ﬁeld

(1.3.2)

Example 133

Let © = R and & be the class of all mtervals of the form ( 0, a], (b, c], and
(d, ©0):

(b, c]" = (-0, b] Ufc,0) € @
(d,0) = (-,d] €@ ",
(—w,a] =(a,0) €&

From Example 1.3.1 the class & is closc;,d under finite intersections. Similarly
it can also be shown that @ is closed under finite unions. Hence the class @ is a
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field. However, for infinite intersections of the form

ﬁ'(b—%,c)= (b,c) e @

n=1
the class @ is not a o-field.
Proposition 1.3.1 Intersection of ¢-Fields

The intersection of any nonempty but arbitrary collection of o-fields in £ is a
o-field in Q.

In general the arbitrary union of a collection of ‘o-fields may not be a o-field.

Many of the examples given above illustrate that an arbitrary class € of
subsets of & may or may not be a o-field. However, we can always construct
the smallest o-field over @ which will contain & and will be denoted by
o(@) = F. This will always exist since 6(&) can be defined as the intersection
of all o-fields containing @. If 0,(@), 0,(&),... are all o-fields containing @,
then

o(€) = N o,(@)

i=1

Further the minimal o-field thus generated is unique. We shall call o(@) the
o-field generated by @.

Example 1.3.4

Let the sample space @ contain w-points of the toss of a die. @ is the set
{1,2,3,4,5,6). We shall now define a class of sets

&={2,9,(1,3,5),{2,4,6}, {2,4})

Clearly @ is not a field since {1,3,5} U {2,4} = {1,2,3,4,5} is not in &.
However, we can generate the field containing @ by

o(@)=F= (&, (1.3,5.6), (6). {1.2.3.4.5)})

‘which is indeed a o-field, and we can show that it is the minimal o-field

generated by &.

So far we have not considered the nature of the sample space Q, except that
it is nonempty. A set 4 and a class of.subsets of A called open sets of 4, such
that this class contains @ and A, and closed under finite intersections and
arbitrary unions, is called a topological space. If Q is a topological space, an

L



