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Preface

Numerical linear algebra, also called matrix computation, has been a cen-
ter of scientific and engineering computing since 1946, the first modern com-
puter was born. Most of problems in science and engineering finally become
problems in matrix computation. Therefore, it is important for us to study nu-
merical linear algebra. This book gives an elementary introduction to matrix
computation and it also includes some new results obtained in recent years. In
the beginning of this book, we first give an outline of numerical linear algebra
in Chapter 1.

In Chapter 2, we introduce Gaussian elimination, a basic direct method,
for solving general linear systems. Usually, Gaussian elimination is used for
solving a dense linear system with median size and no special structure. The
operation cost of Gaussian elimination is O(n3) where n is the size of the
system. The pivoting technique is also studied.

In Chapter 3, in order to discuss effects of perturbation and error on nu-
merical solutions, we introduce vector and matrix norms and study their prop-
erties. The error analysis on floating point operations and on partial pivoting
technique is also given.

In Chapter 4, linear least squares problems are studied. We will concen-
trate on the problem of finding the least squares solution of an overdetermined
linear system Ax = b where A has more rows than columns. Some orthog-
onal transformations and the QR decomposition are used to design efficient
algorithms for solving least squares problems.

We study classical iterative methods for the solution of Az = b in Chapter
5. Iterative methods are quite different from direct methods such as Gaussian
elimination. Direct methods based on an LU factorization of the matrix A
are prohibitive in terms of computing time and computer storage if A is quite
large. Usually, in most large problems, the matrices are sparse. The sparsity
may be lost during the LU factorization procedure and then at the end of LU
factorization, the storage becomes a crucial issue. For such kind of problem,
we can use a class of methods called iterative methods. We only consider some
classical iterative methods in this chapter.

In Chapter 6, we introduce another class of iterative methods called Krylov
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subspace methods proposed recently. We will only study two versions among
those Krylov subspace methods: the conjugate gradient (CG) method and the
generalized minimum residual (GMRES) method. The CG method proposed
in 1952 is one of the best known iterative method for solving symmetric pos-
itive definite linear systems. The GMRES method was proposed in 1986 for
solving nonsymmetric linear systems. The preconditioning technique is also
studied.

Eigenvalue problems are particularly interesting in scientific computing. In
Chapter 7, nonsymmetric eigenvalue problems are studied. We introduce some
well-known methods such as the power method, the inverse power method and
the QR method.

The symmetric eigenvalue problem with its nice properties and rich mathe-
matical theory is one of the most interesting topics in numerical linear algebra.
In Chapter 8, we will study this topic. The symmetric QR iteration method,
the Jacobi method, the bisection method and a divide-and-conquer technique
will be discussed in this chapter.

In Chapter 9, we will briefly survey some of the latest developments in us-
ing boundary value methods for solving systems of ordinary differential equa-
tions with initial values. These methods require the solutions of one or more
nonsymmetric, large and sparse linear systems. Therefore, we will use the
GMRES method in Chapter 6 with some preconditioners for solving these
linear systems. One of the main results is that if an Ay, v,-stable boundary
value method is used for an m-by-m system of ODEs, then the preconditioned
matrix can be decomposed as I + L where I is the identity matrix and the
rank of L is at most 2m(vy + v,). It follows that when the GMRES method
is applied to the preconditioned system, the method will converge in at most
2m(11 +1,)+1 iterations. Applications to different delay differential equations
are also given.

“ If any other mathematical topic is as fundamental to the mathe-
matical sciences as calculus and differential equations, it is numerical
linear algebra. ¥ — L. Trefethen and D. Bau III
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Chapter 1

Introduction

Numerical linear algebra (NLA) is also called matrix computation. It is a
center of scientific and engineering computing since the first modern computer
came to this world around 1946. Most of problems in science and engineering
are finally transferred into problems in NLA. Thus, it is very important for
us to study NLA. This book gives an elementary introduction to NLA and it
also includes some new results obtained in recent years.

1.1

Basic symbols

We will use the following symbols throughout this book.

Let R denote the set of real numbers, C denote the set of complex num-

bers and i = /-1.

Let R™ denote the set of real n-vectors and C* denote the set of complex
n-vectors. Vectors will almost always be column vectors.

Let R™*™ denote the linear vector space of m-by-n real matrices and
C™*™ denote the linear vector space of m-by-n complex matrices.

We will use the upper case letters such as A, B, C, A and A, etc, to
denote matrices and use the lower case letters such as z, y, 2z, etc, to
denote vectors.

The symbol a;; will denote the ij-th entry in a matrix A.

The symbol AT will denote the transpose of the matrix A and A* will
denote the conjugate transpose of the matrix A.

Let a1, -,am € R* (or C*). We will use span{ay,---,an} to denote
the linear vector space of all the linear combinations of aq, - - - , Q.

Let rank(A) denote the rank of the matrix A.

Let dim(S) denote the dimension of the vector space S.
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e We will use det(A) to denote the determinant of matrix A and use

diag(ai1,- -, ann) to denote the n-by-n diagonal matrix:
a’ll 0 PR 0
0 a :
diag(alla Tty ann) - 22
: . .0
0 - 0 ann

e For matrix A = [a;j], the symbol |A| will denote the matrix with entries
(14Dis = lass).

e The symbol I will denote the identity matrix, i.e.,

1 0 0
0 1
1= ,
0
0 0 1

and e; will denote the i-th unit vector, i.e., the ¢-th column vector of I.

® We will use ||-|| to denote a norm of matrix or vector. The symbols || - |1,
| - ll2 and || - ||oo will denote the p-norm with p = 1,2, 0o, respectively.

® As in MATLAB, in algorithms, A(4,5) will denote the (i, j)-th entry
of matrix A; A(3,:) and A(:,j) will denote the i-th row and the j-th
column of A, respectively; A(i; : i9, k) will express the column vector
constructed by using entries from the 7;-th entry to the i5-th entry in the
k-th column of A; A(k,j; : j2) will express the row vector constructed
by using entries from the j;-th entry to the jo-th entry in the k-th row
of A; A(k :1,p: q) will denote the (I — k + 1)-by-(qg — p + 1) submatrix
constructed by using the rows from the k-th row to the I-th row and the
columns from the p-th column to the ¢-th column.

1.2 Basic problems in NLA

NLA includes the following three main important problems which will be stud-
ied in this book:

(1) Find the solution of linear systems
Az =b

where A is an n-by-n nonsingular matrix and b is an n-vector.
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* (2) Linear least squares problems: For any m-by-n matrix A and an m-
vector b, find an n-vector x such that

- = mi — bl|2.
14z — b2 = min || Ay — bll;

(3) Eigenvalues problems: For any n-by-n matrix A, find a part (or all) of
its eigenvalues and corresponding eigenvectors. We remark here that a
complex number ) is called an eigenvalue of A if there exists a nonzero
vector x € C* such that

Azr = Az,

where z is called the eigenvector of A associated with .

Besides these main problems, there are many other fundamental problems
in NLA, for instances, total least squares problems, matrix equations, gener-
alized inverses, inverse problems of eigenvalues, and singular value problems,
etc.

1.3 Why shall we study numerical methods?

To answer this question, let us consider the following linear system,

Ar =b
where A is an n-by-n nonsingular matrix and z = (T1, 2, -+, zn)T. If we use
the well-known Cramer rule, then we have the following solution:
_ det(Al) _ det(Ag) e det(An)
P det() T Get(d) ) T der(a)”
where A;, for i = 1,2,-..,n, are matrices with the i-th column replaced by the
vector b. Then we should compute n + 1 determinants det(4;),7=1,2,---,n,

and det(A). There are
[nin—1D)(n+1) = (n—1)(n+ 1)}

multiplications. When n = 25, by using a computer with 10 billion opera-
tions/sec., we need

24 x 26!
1019 x 3600 x 24 x 365

=~ 3.06 billion years.

If one uses Gaussian elimination, it requires

SGE-Di+1)=3-n= én(n +1)(2n +1) - n = O(n?)
i=1 i=1
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multiplications. Then less than 1 second, we could solve 25-by-25 linear sys-
tems by using the same computer. From above discussions, we note that for
solving the same problem by using different numerical methods, the results
are much different. Therefore, it is essential for us to study the properties of

numerical methods.

1.4 Matrix factorizations (decompositions)

For any linear system Az = b, if we can factorize (decompose) A as A = LU
where L is a lower triangular matrix and U is an upper triangular matrix,

then we have
Ly =1b,
(1.1)
Uz =y.

By substituting, we can easily solve (1.1) and then Az = b. Therefore, ma-
trix factorizations (decompositions) are very important tools in NLA. The
following theorem is basic and important in linear algebra, see [16].

Theorem 1.1 (Jordan Decomposition Theorem) If A € C**", then
there exists a nonsingular matriz X € C**" such that

X'AX = J = diag(Jy, Ja, -+, J),

or A= XJX™' where J is called the Jordan canonical form of A and

A 1 0 .. 0]
0 A 1
Ji=1{ 1 o . . o | eCux™
: . o1
[0 - o 0 N

fori=1,2,-.- p, are called Jordan blocks with ny +- - - +np, =n. The Jordan
canonical form of A is unique up to the permutation of diagonal Jordan blocks.
If A € R™™™ with only real eigenvalues, then the matriz X can be taken to be
real.

1.5 Perturbation and error analysis

The solutions provided by numerical algorithms are seldom absolutely correct.
Usually, there are two kinds of errors. First, errors appear in input data caused
by prior computations or measurements. Second, there may be errors caused
by algorithms themselves because of approximations made within algorithms.
Thus, we need to carry out a perturbation and error analysis.
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(1) Perturbation.

For a given =, we want to compute the value of function f(z). Suppose
there is a perturbation dz of z and |éz|/|z| is very small. We want to
find a positive number ¢(z) as small as possible such that

< c(ar:)l—'(-szi,|

|f(z + éz) — f(=)]
|f(2)]

Then c(z) is called the condition number of f(z) at z. If c¢(z) is large,
we say that the function f is ill-conditioned at z; if ¢(z) is small, we say
that the function f is well-conditioned at .

Remark: A computational problem being ill-conditioned or not has no
relation with numerical methods that we used.
(2) Error.

By using some numerical methods, we calculate the value of a function f
at a point  and we obtain j. Because of the rounding error (or chopping
error), usually '

g # f(z).

If there exists dz such that
¥ = f(z + éx), [0z] < €|z|,

where ¢ is a positive constant having a closed relation with numerical
methods and computers used, then we say that the method is stable if ¢
is small; the method is unstable if e is large.

Remark: A numerical method being stable or not has no relation with
computational problems that we faced.

With the perturbation and error analysis, we obtain

9= F@)| _ |fle+dz) - f(@)] _ . |oz]

= r)— < €c

@) far S @ S el

"Therefore, whether a numerical result is accurate depends on both the stabil-
ity of the numerical method and the condition number of the computational
problem.
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1.6 Operation cost and convergence rate
Usually, numerical algorithms are divided into two classes:
(1) direct methods;
{ (ii) iterative methods.

By using direct methods, one can obtain an accurate solution of computational
problems within finite steps in exact arithmetic. By using iterative methods,
one can only obtain an approximation solution of computational problems
within finite steps.

The operation cost is an important measurement of algorithms. The op-
eration cost of an algorithm is the total operations of “+, —, x, +” used in
the algorithm. We remark that the speed of algorithms is only partially de-
pending on the operation cost. In modern computers, the speed of operations
is much faster than that of data transfer. Therefore, sometimes, the speed of
an algorithm is mainly depending on the total amount of data transfers.

For direct methods, usually, we use the operation cost as a main measure-
ment of the speed of algorithms. For iterative methods, we need to consider

(i) operation cost in each iteration;
(ii) convergence rate of the method.

For a sequence {z;} provided by an iterative algorithm, if {zr} — z, the
exact solution, and if {z;} satisfies

ek — 2|l < cllag—r —2|l, k=1,2,---,

where 0 < ¢ < 1, then we say that the convergence rate is linear. If it satisfies
lzr — |l < cllzk—1 ~2|P, k=1,2,---,

where 0 < ¢ < 1 and p > 1, then we say that the convergence rate is superlin-

ear.

Exercises:
1. Let A € C**™ and B € C™*!, Prove that
rank(AB) > rank(A) + rank(B) — m.

2. Let
Ay Ay J
A= ,
[ Az A
where A;;, for i, = 1,2, are square matrices and satisfy Aj142; = Ay Aq;.
Then

det(A) = det(A;; Aoz — An Ara).
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10.

11.

Show that det(] — uv*) = 1 — v*u where u,v € C™ are column vectors.

A matrix is strictly upper triangular if it is upper triangular with zero diagonal
elements. Show that if A is a strictly upper triangular matrix of order n, then
A" =0.

Let A be an m-by-n matrix and B be an n-by-m matrix. Show that the matrices

AB 0 4 [0 o
B o * | B BA

are similar. Conclude that the nonzero eigenvalues of AB are the same as those
of BA.

A matrix M € C**" is Hermitian positive definite if it satisfies
M= M"* z*Mz > 0,
for all £ # 0 € C*. Let A and B be Hermitian positive definite matrices.

(1) Show that the matrix product AB has positive eigenvalues.
(2) Show that AB is Hermitian if and only if A and B commute.

. Show that if A is skew-Hermitian, i.e., A* = — A, then all its eigenvalues lie on

the imaginary axis.

Let

Ay Ap J
A= .
[ Azr A

Assume that A;;, Ayp are square, and Ay, Agy — AglAfllAlz are nonsingular.
Let
By, By, J
B =
[ Bz Ba
be the inverse of A. Show that
Bz = (A2s — An A A1), B = — A A12 By,

Bat = ~ByAnAf', By = A7 - Bi2An A7

Suppose that A and B are Hermitian with A being positive definite. Show that
A+ B is positive definite if and only if all the eigenvalues of A~! B are greater
than —1.

Let A be idempotent, i.e., A2 = A. Show that the eigenvalues of A are zero
and one.

Prove that any matrix A € C**™ has a polar decomposition A = HQ, where H
is Hermitian positive semi-definite and Q is unitary. We recall that M € C**»
is a unitary matrix if M~1 = M*. Moreover, if A is nonsingular, then H is
Hermitian positive definite and the polar decomposition of A is unique.



