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Preface

This book was written to serve as a textbook for either a senior-level
introductory course in stochastic processes or a first-year graduate-leve!
follow-up course. The prerequisites for the senior-level course are courses ir
mathematics usually required of a senior majoring in electrical engineering,
namely, matrix algebra, differential equations, and Laplace and Fourier
transforms, plus a one-quarter course in probability. Although no ad-
ditional specific prerequisites are presumed for the graduate course, it is
hoped that graduate students will possess a significant intangible asset
sometimes called “mathematical maturity.” The courses for which this
book serves as a text are prerequisites at UCLA for graduate courses in
control systems engineering and communications systems engineering. The
book is intended t> provide the basic knowledge needed for learning to
design analog communication systems and linear control systems operating
in an aleatory environment as well as for gaining an understanding of
standard digital signal processing techniques.

These courses in stochastic processes in the Electrical Engineering De-
partment at UCLA are the descendants of similar courses that have
typically been taught for the past 30 years using as texts such books as
Davenport and Root (1958) or Papoulis (1965), which are-listed in the
reference section. During that time, there have been two historical develop-
ments that have had contrary impacts upon the way the subject of stochas-
tic processes now needs to be taught. The first of these is the increasingly
high level of mathematical sophistication that one encounters in research
papers in the JEEE Transactions and many other journals pertinent to the
subject. The second is the development and proliferation of the micro-
processor and associated software.

vii



viii PREFACE

A consequence of the first development is that a Ph.D. student in
electrical engineering who expects to do cutting-edge research and make a
theoretica! contribution in a dissertation will have to know measure theory
and functional analysis. A consequence of the second development is that
recent textbooks for undergraduatss on digital filter design make very
minimal assumptions concerning the reader’s background in calculus, but
do presume some familiarity with discrete mathematics. In courses such as
the one for which this textbook is designed, we are confronted with the
dilemma of taking a studemt whose undergraduate preparation largely
reflects the second trend and attempting to prepare that student for a career
in a graduate school curriculum oriented toward the first trend.

Just for the sake of illustration, a recent text that exemplifies the first
trend is the excellent book by Wong and Hajek (1985). A contemporary
text exemplifying the second trend is the enjoyable book by Williams
(1986).

I believe that a student who proposes to do serious work in stochastic
processes at the Ph.D. level must take a course in real analysis from the
mathematics department, followed by a course in functional analysis using
a text such as the one by Balakrishnan (1981). Therefcre, I have not
endeavored to introduce the student to measure theory in this book. I have
attempted to set him or her thinking along appropriate lines, by introducing
probability in terms of set theory, by calling the probability set function a
“probability measure,” and by dropping hints here and there. For the same
reason, there is no mention, except here, of the Ito stochastic calculus and
associated topics in this book. On the other hand, I have ventured to
discuss Hilbert space openly and without embarrassment. Although this
choice may appear largely idiosyncratic, it was based on my experience in
terms of what seems to work and what does not. I do believe it is desirable
to introduce the Karhunen-Loeve expanmsion in a course such as this
one, because it is part of the theoretical basis for such success.ul practi-
cal contributions as the Viterbi decoding algorithm. While discussing
Karhunen-Loeve, some information on Hilbert space theory is very useful.
It aiso helps in providing an interpretation of the meaning of the innova-
tions process in Kalman filtering theory.

In order to accommodate our computer-oriented undergraduates, Chapter
2 includes a review of the Gaussian distribution in one and two dimensions
and an exploration of some of its properties. This incidentally gives me an
opportunity to check out the student’s ability to do matrix manipulations
and to evaluate multiple integrals. Chapter 4 meets the students on their
level by discussing finite length random sequences, and in Appendix 2 we

provide a computer program that will generate such sequences for students
to investigate as they like.



PREFACE ix

The essential core of the undergraduate course is the material in Chapters
2, 4, 5, and 6. Depending upon the time available and the refractoriness of
the students, material from Chapters 3, 9, and 10 can be introduced. The
graduate course reviews all of that material and then takes up the discus-
sion of the Hilbert space of second-order random variables from Chapter 1
and the Hilbert space of square integrable functions from Chapter 8, and
then proceeds into the presentation of the Karhunen-Loeve expansion.
Again depending upon time and opportunity, we can cover the properties
of the conditional multidimensional Gaussian density and the introduction
to estimation theory from Chapter 3, the state-space theory of dynamic
systems from Chapters 7 and 10, and the introduction to Kalman filtering
theory in Chapter 11.

The book was deliberately put in the form of a smorgasbord of topics,
for maximum flexibility. The style is informal and discursive in order to
keep the attention of most students. The theorem-proof format is used only
in a few places where it seems particularly desirable to summarize the
development and provide a concise statement of results.

Having now tried at some length to explain what I was trying to do,
what I think I did, and why I made those particular choices, it is ap-
propriate to express my gratitude to some of my colleagues for facilitating
my efforts. I wish to thank Professors A. V. Balakrishnan, Jack Carlyle, and
Stephen Jacobsen, all former chairmen of the former Department of System
Science, for creating an envirciiment that stimulated the genesis of this
book and for their incredibie paticnce with my idiosyncratic behavior.
Further thanks go to Professcrs C. R. Viewanathan and Fred Allen, the
former and the current chairman, respeciively, of the Department of
Electrical Engineering, which largely absoried the Nepartment of System
Science, for creating the nurturing climate that enabled this book to become
a reality. Additional gratitude is due my colleagues on the faculties of those
two departments, whom I will not mention individually for fear of over-
looking someone, for many enjoyable discussions over the years. I am
deeply indebted to my students over the past 20 years, who taught me
valuable lessons about education.

Finally, my sincerest thanks go to Sophie Spurrier for typing the entire
manuscript and cnduring the process of making seemingly endless correc-
tions and improvements.

RicHARD E. MORTENSEN

Los Angeles, California
November 1986
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Chapter 1
L. T

Discussion of Probability and
Stochastic Processes

Introduction

The purpose of this book is to present some particular topics from the
theory of stochastic processes which have found applications in control and
communications engineering. The book has been written on the assumption
that the reader has already had an introductory course in probability
theory. Nevertheless, for a variety of reasons it seems appropriate and
useful to begin with a review of that subject.

In this chapter we provide a review of the main ideas from probability
theory that will be needed in understanding the material in this book.
Beyond that, we will introduce one or two ideas which will probably be new
to the reader, such as the Hilbert space of second-order random variables,
that also will be handy to have available. Finally, after we define some
terms and develop some concepts, we will explain what we hop~ the student
will acquire from studying the material in this book, and provide a brief
survey of the task to be undertaken. , v

In order to do that, we will provide a tentative definition of the term.
“stochastic process,” as well as a brief discussion of certain kinds of
stochastic processes which will be encountered again subsequently. The end
of the chapter also contains a short statemént explaining why the book has
been written the way it has. ' '

Probability - -

It is widely agreed that a good way o study probability theory is to base it
on set theory. We will approach the subject from that standpoint. The term

1




2 ' DISCUSSION OF PROBABILITY AND STOCHASTIC PROCESSES

““set” is, in very rigorous treatments, considered to be an undefined concept

which includes certain properties that are assumed in the initial axioms
upon which the whole subject is based. Intuitively, a set is a collection of
objects. In probability theory, these “objects” are elementary events. In set
theory, the set of al! the objects with which one intends to deal is taken as
the universal set. In probability theory, the universal set is called the sample
space.

Suppose one does an experiment in which the element of randomness is
known to play a role. For example, conduct a survey by selecting some
category of people and asking them questions, or make repeated measure-
ments of some physical variable under circumstances where experimental
error is known not to be negligible. Such an experiment is sometimes called
a random experiment. It is not the structure of the experiment that is
random; instead, randomness refers to the fact that the outcome cannot be
predicted precisely in advance.

The statistics of the experiment refers, at the most primitive level, simply
to the data itself. On a more refined level, “statistics” also refers to certain
properties the data is found to have after subjecting it to some numerical
processing. Probability theory is used to analyze such a random experiment.
It is used to decide what kind of numerical processing is appropriate for the
data and what kind of statements one can make with confidence concerning
the statistics. Even more basically, probability theory is used to determine
how the experiment should be structured so that one can make meaningful
statements with confidence.

In performing such an analysis using probability theory, it turns out to
be a disadvantage to have a sample space that is too large or too small.
Therefore, the choice of sample space is usually tailored to the experiment
in question. For example, suppose the experiment is to flip a coin 10 times,
and record the outcome of each flip, that is, whether it is heads or tails. A
sample space with only two points in it, heads and tails, is too small and is
actually not useful. A sample space with infinitely many points in it is
certainly large enough. The problem is, it is so large as to be unwieldy, and
it may lead one into mathematical distress of a kind that one prefers to
avoid if there be a way of avoiding it.

The sample space for the above experiment which turns out to be “just
right” is the set of all binary sequences of length 10. There are 2'° = 1024 of
these, so this sample space contains 1024 points. Each point is an “elemen-
tary event,” that is, a complete sequence of 10 flips. A single flip is not an
. elementary event.

In doing mathematical probability theory this way, a numerical probabil-
ity would first be assigned to each elementary event (each sequence of
length 10). The value of the probability assigned to each event must be a



PROBABILITY 3

real number between 0 and 1, and the sum of the values over all 1024 pointg
. of the sample space must be exactly 1.

At this juncture, we can look at various subsets of the sample space, for
example, the subset consisting of all sequences having heads occur on the
first flip. The sum of the values of probability over all of the points in this
subset is, by definition, the probability of getting a head on the first flip. If
that number agrees with what you intuitively feel ought to be the case, then
you may say that your coin-flipping model is realistic. On the other hand, if
that is not the value that you think the event of getting a head on the first
flip should have, then you must change the probabilities assigned to the
elementary events until things come out the way you want them to.

Probability theory will show you how to make calculations from your
mathematical model concerning the probabilities of various events, It is up
to you to take the responsibility for deciding whether or not the model is
realistic. If you test it in situations where the correct answer is already
known, and the model gives you the correct answer there, then you may feel
confident in trusting it in situations where the answer is unknown.

Let us now give some precise mathematical definitions. The fundamental
entity that we require in order to use probability theory is a probability trio
(2, o, P). The first member of the trio, £, is the sample space, which may
be either finite, countably infinite, or uncountably infinite. The second
member of the trio, &, is the algebra of admissible subsets of 2, also called
the algebra of events. The third member of the trio, P, is the probability
measure defined on /. That is, P is a set function. Its argument is one of
the sets that belongs to &, and its value is a real number between 0 and 1.

If Q is a finite set, then & is simply the collection of all subsets of £,
the so-called power set 29. If Q is an infinite set, it is not possible in general
to assign a probability to every one of its subsets in a consistent way
without encountering mathematical difficulties. Therefore, the family of
subsets of {2 to which probabilities are assigned has to be specified. That is
what o/ is. Its members obey the rules of Boolean algebra with respect to
the operations of union, intersection, and complement. :

With these agreements in force, the only conditions that the set function
P must satisfy in order to be a probability measure are the following:

1. P(@) =0 where & = empty set

2. P(A2)=1

3. P(A)=20 foreveryAin o

4. If A,, A,,... are disjoint members of o, then

() Erin



4 DISCUSSION OF PROBABILITY AND 5TOCHASTIC PROCESSES

Random Variables

In addition to the function P defined on &/, we also consider functions
defined on £ itself. Any such function is called a random variable. If the
value of the function is a real number, it is called a real random variable; if
the value is a complex number it is called a complex-valued random
variable; if the value is a vector in R”, it is called a vector-valued random
variable; and so on. It is customary to abbreviate “random variable” by r.v.

If the set £ is infinite, then in order to avoid mathematical distress we
have to ban certain pathological functions. It is very unlikely such a
function would arise in most applications, but we will include this restric-
tion for the sake of precision. Let us explain it further.

The class of admissible random variables must agree with our algebra of
admissible sets. We will explain what “agree” means for real r.v.’s; the
extension to more general r.v.’s is a technicality. If X(w) is a real r.v, then
we want to discuss the probability that the value of X falls in some interval

I of the real line. In order to do that, we have to be dealing with an event.
Therefore, define

XN ={we: X(w) eI} 1)

The symbol € means “belongs to.” It suffices for this condition to
consider only the class of semi-infinite intervals of the form I = (- o0, a},
for every real number a. If for each a, the set X~}(7I) is a member of <,
then X is an admissible r.v.

Under those circumstances, we are assured that the probability P{ — oo
< X < a} of the event that X is less than or equal to a is well defined. We
give this probability a special name. Since it is a function of the parameter

a, we call it the distribution function for the r.v. X. It is denoted by Fy(a).
In symbols:

Fy(a) =P{-o <X <a) 2)

Under appropriate circumstances, the distribution function Fy(a) turns
out 1o be differentiabie with respect to the parameter a. This will happen
only when the sample space £ is uncountably infinite. In those cases it is
convenient o work with the probabilicv density function, defined as the
derivative of F,. {* has become a common practice to use the same ietier
for the argument of s density function as is used to designate the random
variabie i‘t ~s!t' Adma hothis system inay be used without confusion by
cun;ec for studentz izving to master the fundamen-

afusing. in this beok we will aiways use a capital
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letter for random variables. The parameter in the density function will then
be the corresponding lowercase letter.

DerINITION. Let X be a real random variable having a probability
distribution F, which is differentiable. Denote the derivative by fy. Then
we call f, the probability density function for the r.v. X. In symbols:

fe(x) = S Felx) e

The values of F, are probabilities, but the values of f, are not.
Probabilities are found by integrating f,, for example:

Plas X<} = [fylx)dx {4)

It follows directly from (2) that the distribution function F, for any r.v.
X possesses the foliowing four properties:

F, is nondecreasing: a < b implies Fy(a) < Fy(b)

lim, ,, Fy{(x)=1

m,_, __ Fy(x)=0

Fy is continuous from the right, that is, at any discontinuity F,
assumes the upper value.

Ll ol M

If Fy is piecewise constant, that is, a staircase function consisting of only
finite jumps and constant segments, then X is called a discrete r.v. If F,
has no discontinuities whatsoever, then X is called a continuous r.v. A
general r.v. is sometimes called mixed.

Strictly speaking, only continuous r.v.’s with F differentiable can possess
density functions, although by resorting to the use of § functions, which is
common in engineering practice, even a discrete r.v. can be assigned a
density.

Suppose X is a discrete r.v. which assumes only a finite set of possible
values a,, a,,...,a,, with respective probabilities p,, p,,..., p,. Intui-
tively, we may say that X can be expected to have value a, a fraction p, of
the time. If we make many different observations of X and average the
results, then as the number of observations becomes infinite the sample
average will approach the number

p= E Gy Py ()
k=1
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In (5) we have written p as a sum over the range of X, that is, the set of
values assumed by X. Conceptually, it is valuable to realize that this same
quantity could also be computed by a sum over the sample space £,
specifically

p= Y X(0)P{we®: X(v)=a,)} 6)

wefd o

The summation in (6) is accomplished by partitioning 2 into disjoint
subsets A4,, 4,,..., 4,, such that for each k, A4, is the set of « points for
which X(w) assumes the same value a,.

When X is a continuous r.v., the definition (5) generalizes to
[ -]
p= [ xfy(x)dx ™

The expression (6) generalizes into the Lebesgue integral, as defined in
measure theory. A discussion of that is beyond the scope of this book.

The quantity given by (5), (6), or (7) is called the mean or expected value
of X. In rigorous treatments, the most satisfactory way of introducing the
expected value operator is to base it on a precise version of (6), which we
have here written in a symbolic form to try to suggest the underlying
concept.

Since we will mainly be concerned with r.v.’s possessing density func-
tions, we will henceforth take (7) as the definition of the mean, without
further comment. '

Higher moments are defined analogously, whenever the integrals exist:

Bo= [ x"fulx) de (8

— o0

When considerable wbrk has to be done involving moments, it is useful to

make use of the properties of the characteristic function M(u), which is just
the Fourier transform of the density: ‘

o .
M(u) = [ e™*f(x)dx ©)
When the moment u, exits, it may be found by the formula
o= (=) S M () (10)
" dau” um0

If the characteristic function is known, then the density may be recovered



