LNCS 2334

Georg Carle

Martina Zitterbart (Eds)

Protocols for |
High Speed Networks

7th IFIP/IEEE International Workshop, PfHSN 2002
Berlin, Germany, April 2002
Proceedings

€); Springer

Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editors

Georg Carle

Fraunhofer Institut FOKUS

Kaiserin-Augusta-Allee 31, 10589 Berlin, Germany
E-mail: carle@fokus.gmd.de

Martina Zitterbart

University of Karlsruhe

Faculty of Computer Science, Institute of Telematics
Zirkel 2, 76128 Karlsruhe, Germany

E-mail: zit@tm.uka.de

Cataloging-in-Publication Data applied for
Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Protocols for high speed networks : 7th IFIP/IEEE internationa! workshop ;
proceedings / PFHSN 2002, Berlin, Germany, April 22 - 24, 2002. Georg Carle ;
Martina Zitterbart (ed.). - Berlin ; Heidelberg ; New York ; Barcelona ;
Hong Kong ; London ; Milan ; Paris ; Tokyo : Springer, 2002

(Lecture notes in computer science ; Vol. 2334)

ISBN 3-540-43658-8

CR Subject Classification (1998): C.2, D.4.4,H3.5,K .44

ISSN 0302-9743
ISBN 3-540-43658-8 Springer- Verlag Bcrlm Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer- Verlag. Violations are
liable for prosecution under the German Copyright Law.

Springer-Verlag Berlin Heidelberg New York
a member of BertelsmannSpringer Science+Business Media GmbH

http://www.springer.de

©2002 IFIP International Federation for Information Processing, Hofstrasse 3, A-2361 Laxenburg,Austria
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Steingriber Satztechnik GmbH, Heidelberg
Printed on acid-free paper SPIN 10869765 06/3142 543210

Preface

This workshop on “Protocols for High-Speed Networks” is the seventh in a suc-
cessful series of international workshops, well known for their small and focused
target audience, that provide a sound basis for intensive discussions of high-
quality and timely research work.

The location of the workshop has alternated between Europe and the United
States, at venues not only worth visiting for the workshop, but also for the
distinct impressions they leave on the participants. The first workshop was held
in 1989 in Zurich. Subsequently the workshop was moved to Palo Alto (1990),
Stockholm (1993), Vancouver (1994), Sophia-Antipolis/Nice (1996), and Salem
(1999). In 2002, the workshop was hosted in Berlin, the capital of Germany.

PfHSN is a workshop providing an international forum that focuses on issues
related to high-speed networking, such as protocols, implementation techniques,
router design, network processors and the like. Although the topics have shifted
during the last couple of years, for example, from parallel protocol implementa-
tions to network processors, it could be observed that high speed remains a very
important issue with respect to future networking. Traditionally, PfHSN is a rel-
atively focused and small workshop with an audience of about 60 participants.
The workshop is known for lively discussions and very active participation of
the attendees. A significant component of the workshop is the institution of so-
called Working Sessions chaired by distinguished researchers focusing on topical
issues of the day. The Working Sessions, introduced in 1996 by Christophe Diot
and Wallid Dabbous, have proved to be very successful, and they contribute
considerably to making PfHSN a true “workshop.”

This year, the program committee had to be once again rather selective,
accepting only 14 out of 54 submissions as full papers. Working sessions on
extremely timely issues, e.g., High-Speed Mobile Wireless, complemented the
program. In addition, the workshop featured a keynote speech which gave an
operator’s viewpoint on high-speed networking, and an invited talk bringing a
manufacturer’s viewpoint. In honor of the large number of good submissions
and to allow for the presentation of new and innovative work, the program was
complemented by a set of six short papers and a panel session.

High-speed networking has changed enormously during the thirteen years
covered by the workshop. Technologies such as ATM have moved into the spot-
light and out again. What was once at the forefront of technology and deployed
only in niches has become a commodity, with widespread availability of commer-
cial products such as Gigabit Ethernet. At the same time, many issues identified
by research to be important a decade ago have proven to be very timely today.

VI

While this year’s papers give answers to many important questions, they also
show that there is still a lot of room for additional work in the future.

March 2002 Georg Carle, Martina Zitterbart

Organization

The Seventh International Workshop on Protocols for High-Speed Networks
(PfHSN 2002), held in Berlin, Germany from Monday, April 22 to Wednesday,
April 24, 2002, was jointly organized by the Fraunhofer Institute FOKUS and
the Institute of Telematics, University of Karlsruhe. It was sponsored by IFIP
WG6.2, the Working Group on Network and Internetwork Architecture. Techni-
cal co-sponsorship was provided by the [IEEE Communications Society Technical
Committee on Gigabit Networking. The workshop was organized in cooperation
with COST Action 263 — Quality of future Internet Services.

Workshop Co-chairs

Georg Carle, Fraunhofer FOKUS, Germany
Martina Zitterbart, University of Karlsruhe, Germany

Steering Committee

James P.G. Sterbenz, BBN Technologies, GTE, USA (Chair)
Per Gunningberg, Uppsala University, Sweden

Byran Lyles, Sprint Labs, USA

Harry Rudin, IBM Zurich Research Lab, Switzerland
Martina Zitterbart, University of Karlsruhe, Germany

Program Committee

Sujata Banerjee, HP Labs and Univ. of Pittsburgh, USA
Olivier Bonaventure, University of Namur, Belgium
Torsten Braun, University of Bern, Switzerland

Georg Carle, Fraunhofer FOKUS, Germany

Jon Crowcroft, UCL, UK

Christophe Diot, Sprint Labs, USA

Julio Escobar, Centauri Technologies Corporation, Panama
Serge Fdida, University P. and M. Curie, Paris, France

Per Gunningberg, Uppsala University, Sweden

Marjory Johnson, RIACS/NASA Ames Research Center, USA
Guy Leduc, Univ. of Liege, Belgium

Jorg Liebeherr, University of Virginia, USA

Byran Lyles, Sprint Labs, USA

Gerald Neufeld, Redback Networks, USA

Luigi Rizzo, University of Pisa, Italy

Harry Rudin, IBM Zurich Research Lab, Switzerland

VIII

Patricia Sagmeister, IBM Zurich Research Lab, Switzerland
Jochen Schiller, FU Berlin, Germany

James P.G. Sterbenz, BBN Technologies, GTE, USA
Burkhard Stiller, ETH Zurich, Switzerland

Heinrich Stiittgen, NEC Labs, Heidelberg, Germany

Joe Touch, USC/ISI, USA

Giorgio Ventre, University of Napoli, Italy

Martina Zitterbart, University of Karlsruhe, Germany

Additional Reviewers

Maurizio D’Arienzo, University of Napoli, Italy
Christopher Edwards, Lancaster University, UK
Marcello Esposito, University of Napoli, Italy

Jan Gerke, ETH Zurich, Switzerland

lias Iliadis, IBM Zurich Research Lab, Switzerland
H. Hasan, ETH Zurich, Switzerland

David Hausheer ETH Zurich, Switzerland

Rajesh Krishnan, BBN Technologies, USA
Sung-Ju Lee, HP Laboratories Palo Alto, USA

Jan Van Lunteren, IBM Zurich Research Lab, Switzerland
Cristel Pelsser, University of Namur, Belgium
Roman Pletka, IBM Research, Switzerland

Pierre Reinbold, University of Namur, Belgium
Simon Pietro Romano, University of Napoli, Italy
Sambit Sahu, IBM Research, Switzerland

Kave Salamatian, LIP6, University of Paris, France
Steve Uhlig, University of Namur, Belgium

Sponsoring Institutions

T-Systems Nova Berkom, Berlin, Germany
Siemens AG, Information and Communication Networks, Munich, Germany
Network Laboratories Heidelberg, NEC Europe Ltd., Heidelberg, Germany

Table of Contents

Signalling and Controlling

A Core-Stateless Utility Based Rate Allocation Framework 1
Narayanan Venkitaraman, Jayanth P. Mysore, Mike Needham

Resource Management in Diffserv (RMD): A Functionality

and Performance Behavior Overviewccoviu... 17
Lars Westberg, Andrds Csdszdr, Georgios Karagiannis, Addm Marquetant,
David Partain, Octavian Pop, Viera Rezhepi, Rébert Szabd,
Attila Takdes

Performance Evaluation of the Extensions
for Control Message Retransmissions in RSVP 35
Michael Menth, Ridiger Martin

Application-Level Mechanisms

Handling Multiple Bottlenecks in Web Servers
Using Adaptive Inbound Controls 50

Thiemo Voigt, Per Gunningberg

Dynamic Right-Sizing: An Automated, Lightweight,
and Scalable Technique for Enhancing Grid Performance................ 69
Wu-chun Feng, Mike Fisk, Mark Gardner, Eric Weigle

The “Last-Copy” Approach for Distributed Cache Pruning
in a Cluster of HTTP Proxiesooiiniinn i, 84

Reuven Cohen, Itai Dabran

TCP and High Speed Networks

Modeling Short-Lived TCP Connections
with Open Multiclass Queuing Networks 100

M. Garetto, R. Lo Cigno, M. Meo, E. Alessio, M. Ajmone Marsan

TCP over High Speed Variable Capacity Links:
A Simulation Study for Bandwidth Allocation 117

Henrik Abrahamsson, Olof Hagsand, Ian Marsh

X Table of Contents

TCP Westwood and Easy RED to Improve Fairness
in High-Speed Networks i 130
Luigi Alfredo Grieco, Saverio Mascolo

Quality of Service

A Simplified Guaranteed Service for the Internet 147
Fuvgueni Ossipov, Gunnar Karlsson

Improvements to Core Stateless Fair Queueing 164

Cristel Pelsser, Stefaan De Cnodder

A Fast Packet Classification by Using Enhanced Tuple Pruning 180
Pi-Chung Wang, Chia-Tai Chan, Wei-Chun Tseng, Yaw-Chung Chen

Traffic Engineering and Mobility

Traffic Engineering with AIMD in MPLS Networks..................... 192
Jianping Wang, Stephen Patek, Haiyong Wang, Jorg Liebeherr

Performance Analysis of IP Micro-mobility Handoff Protocols 211
Chris Blondia, Olga Casals, Peter De Cleyn, Gert Willems

Working Sessions

High-Speed Mobile and Wireless Networks 227
James P.G. Sterbenz

Peer Networks — High-Speed Solution or Challenge? 228
Joseph D. Touch

Invited Paper

High Speed Networks for Carriers 229
Karl J. Schrodi

Protocols for High-Speed Networks:
A Brief Retrospective Survey of High-Speed Networking Research 243
James P.G. Sterbenz

Author Index 267

A Core-Stateless Utility Based
Rate Allocation Framework

Narayanan Venkitaraman, Jayanth P. Mysore, and Mike Needham

Networks and Infrastructure Research, Motorola Labs,
{venkitar, jayanth,needham}@labs.mot.com

Abstract. In this paper, we present a core-stateless framework for al-
locating bandwidth to flows based on their requirements which are ex-
pressed using utility functions. The framework inherently supports flows
with adaptive resource requirements and intra-flow drop priorities. The
edge routers implement a labeling algorithm which in effect embeds par-
tial information from a flow’s utility function in each packet. The core
routers maintain no per-flow state. Forwarding decisions are based a
packets label and on a threshold utility value that is dynamically com-
puted. Thus the edge and core routers work in tandem to provide band-
width allocations based on a flow’s utility function. We show how the la-
beling algorithm can be tailored to provide different services like weighted
fair rate allocations. We then show the performance of our approach us-
ing simulations.

1 Introduction

The Internet is being increasingly used for carrying multimedia streams that are
sensitive to the end-to-end rate, delay and drop assurances they receive from the
network. We are motivated by two key characteristics that a significant number of
these flow share. First, multimedia flows are increasingly becoming adaptive and
can adjust their level of performance based on the amount of resource available.
The different levels of performance result in varying levels of satisfaction for the
user. Another key characteristic is that most of them tend to be composed of
packets which contribute varying amounts of utility to the flow they belong to.
This intra-flow heterogeneity in packet utility could be caused due to the stream
employing a hierarchical coding mechanism as in MPEG or layered multicast,
or due to other reasons such as the specifics of a rate adaptation algorithm (as
explained later for TCP). In either case, dropping the “wrong” packet(s) can
significantly impact the qualitative and quantitative extent to which a flow is
able to make use of the resources allocated to it. That being the case, the utility
provided by a quantum of resource allocated to a flow depends on the value of
the packets that use it. So, merely allocating a certain quantity of bandwidth to
a flow does not always imply that the flow will be able to make optimal use of
it at all times. As has been observed previously, applications don’t care about

G. Carle and M. Zitterbart (Eds.): PFfHSN 2002, LNCS 2334, pp. 1-16, 2002.
@© Springer-Verlag Berlin Heidelberg 2002

2 N. Venkitaraman, J.P. Mysore, and M. Needham

u(r)
U4

us

[2]

=

Alloted Rate

Fig. 1. Utility Functions

bandwidth, per se, except as a means to achieve user satisfaction. In summary,
if optimizing the perceived quality of service is the end goal of an architecture,
then it is important that we allocate resources according to user’s preferences,
and provide simple ways for a flow to make best use of its share.

Utility functions have long been recognized as an abstraction for a user to
quantify the utility or satisfaction that (s)he derives when a flow is allocated a
certain quantum of resource. It maps the range of operational points of a flow
to the utility that a user derives at each point. Figure 1 shows some sample util-
ity functions. Such an abstraction provides the necessary flexibility to express
arbitrarily defined requirements. Also, it is now well established that different
notions of fairness can be defined in terms of utility functions [4, 7, 8, 10]. Partly
motivated by recent work by Gibbens, Kelly and others [5, 4, 11, 2], we use utility
functions as an abstraction that is used to convey application/user level perfor-
mance measures to the network. In this paper, we only concern ourselves with
allocation of bandwidth as a resource. Therefore, we have used the terms re-
source and bandwidth interchangeably. We hope that the proposed framework
will be a step toward a more general solution that can be used for allocation of
other network resources such as those that impact end to end delay and jitter.

In this paper, we propose a scalable framework for allocating bandwidth to
flows based on their utility functions. The architecture is characterized by its
simplicity - only the edge routers maintain a limited amount of per flow state,
and label the packets with some per-flow information. The forwarding behavior
at a router is based on the state in the packet header. As the core routers do not
perform flow classification and state management they can operate at very high
speeds. Furthermore, the framework allows a flow to indicate the relative priority
of packets within its stream. The dropping behavior of the system is such that
for any flow lower priority packets are dropped preferentially over high priority
packets of the flow.

We refer to our architecture as the Stateless Utility based Resource allocation
Framework(SURF)!. The network objective and architecture are described in
Section 2. The algorithms implemented by this architecture are described in
Section 3. In Section 4, we present the performance of our architecture in a
variety of scenarios. Section 5 discusses our implementation experience and some
key issues. Section 6 discusses the related work and section 7 concludes the paper.

! We borrow the notion of stateless core from CSFQ [14]

A Core-Stateless Utility Based Rate Allocation Framework 3
2 System Architecture

2.1 Network Model

The approach that we propose is based on the same philosophy used in tech-
nologies like CSFQ [14] and Corelite [12]. The network’s edge routers maintain
per-flow state information, and label packets based on rate at which flows send
packets. Core routers maintain no per-flow state. Forwarding decisions are based
on the labels that packet carry and aggregate state information such as queue
length. Thus the edge and the core routers work in tandem to provide per-flow
allocations. We build on these principles to provide resource allocation based on
utility functions.

2.2 Network Objective

Let us assume that all flows provide the network their utility functions. There are
a variety of objective functions that can be used to accomplish different goals. In
the following discussion we consider two possible objectives, provide the intuition
behind them, and motivate our choice of one of them as an objective that we
use in this paper.

A possible network objective is to maximize the aggregate utility at every
link in the network. i.e., at every link in the network, maximize Zf‘il U;(ry),
subject to the constraint Zgl r; < C, where M is the number of flows sharing
the link, U;(r;) is the utility derived by flow i for a allocation r; and C is the total
link capacity. Another potential objective is to maximize the aggregate system
utility, i.e, maximize ZIN=1 Ui(r:), where N is the total number of flows in the
network. For a network with just a single link both the objectives are identical.
However, for a multi-hop network they are different. For instance, consider the
example shown in Figure 2. Here, f1 is a high priority flow and hence has a
larger incremental utility than that for f2 and f3. If the available bandwidth
is two units, then if we use the first objective function we will allocate both
units to f1 in both the links. This maximizes the utility at every link in the
network(3.0 units at every link) and the resultant system utility is 3.0 because
only f1 received a bandwidth allocation. However, if we use the second objective
function, we will allocate two units to f2 and f3 in each of the links. Though
the aggregate utility at any given link is only 2.0, the resultant aggregate system
utility is 4.0. This difference in allocation results from different interpretations

uey wy
2440 ~_2 \"3/'2440
O O O

utr
3.4' ':‘ d fl T

2.0

Fig. 2. Bandwidth Allocation Example

4 N. Venkitaraman, J.P. Mysore, and M. Needham

of the utility function. The first objective function treats utility functions from a
user’s perspective by collapsing the entire network into a single unified resource,
neglecting the hop count. Thus, this interpretation has 2 key characteristics: (i)
it is topology agnostic, i.e. a user does not have to be concerned with how many
hops a flow traverses when specifying a utility value, and (ii) it maintains the
relative importance of different flows as specified by the utility function across
all links.

While the first objective function suites an user’s perspective the second
treats them from a resource pricing point of view. In this interpretation, the
more hops a flow traverses the more resources the flow utilizes and the more a
user should pay for comparable performance. Specifically, the utility functions
can be viewed as quantifying a user’s willingness to pay. Optimizing the second
objective function can maximize the network operator’s revenue. Networks which
employ such an optimization criterion require a user to be cognizant of the hop
count of the end to end path traversed by his flow and alter the utility function
to get performance comparable to a case with a different number of hops.

Arguably, a case can be made in favor of either of the cases mentioned here
or many other possible objectives. As our focus in this paper is to view utility
function as a guide to user satisfaction, independent of network topology, we
choose to focus on the former objective function.

3 Distributed Framework and Algorithms

In this section, we describe the distributed framework that provides rate alloca-
tions that approximate the desired network objective. A key characteristic of the
framework is that only the routers at the edges of the network maintain per-flow
state information and have access to the utility function of the flows. The core
routers however, treat packets independent of each other. They do not perform
any per-flow processing and have a simple forwarding behavior.

The framework has two primary concepts: First, an ingress edge router log-
ically partitions a flow into substreams. The substreams correspond to different
slopes in the utility function of the flow. Substreaming is done by appropriately
labeling the headers of packets using incremental utilities. Second, a core router
has no notion of a flow, and treats packets independent of each other. The for-
warding decision at any router is solely based on the incremental utility labels
on the packet headers. Routers do not drop a packet with a higher incremen-
tal utility label as long as a lower priority packet can instead be dropped. In
other words, the core router attempts to provide the same forwarding behavior
of a switch implementing a multi-priority queue by using instead a simple FIFO
scheduling mechanism, eliminating any need for maintaining multiple queues
or sorting the queue. For ease of explanation, in this paper, we describe the
algorithms in the context of utility function U4 in Figure 12,

2 Many utility functions such as Ul can be easily approximated to a piece-wise function
similar U4. For functions such as U3 we are still working on appropriate labeling
algorithms that provide the right allocation with least amount of oscillations

A Core-Stateless Utility Based Rate Allocation Framework 5

3.1 Substreaming at the Edge

Every ingress edge router maintains the utility function, U(r), and the current
sending rate, r, corresponding to every flow that it serves. The current sending
rate of a flow can be estimated using an algorithm similar to the one described
in CSFQ [14]. The edge router then uses a labeling algorithm to compute an
incremental utility value, u;, that should be marked on the packet header. The
result of this procedure is that the flow is logically divided into k substreams
of different incremental utilities, where k is the number of regions or steps® in
the utility function from 0 to r. The u; field is set to (U(r;) — U(r;-1))/(r; —
rj—1) which represents the increment in utility that a flow derives per unit of
bandwidth allocated to it, in the range (r;,7;_1). Thus all packets have a small
piece of information based on the utility function of the flow embedded in them.

3.2 Maximizing Aggregate Utility

Routers accept packets such that a packet with a higher incremental utility value
is not dropped as long as a packet with a lower incremental utility could instead
be dropped. Such a policy ensures that in any given router, the sum of u; of the
accepted packets is maximized. There are many different ways by which such a
dropping policy can be implemented in the router.

One solution is to maintain a queue in the decreasing order of priorities®.
When the queue size reaches its maxirnum limit, gi;, the lowest priority packet
in the queue can readily be dropped and incoming packet can be inserted appro-
priately. This would provide the ideal result. But in a high speed router, even
with a moderate queue size, such a solution will be inefficient as the processing
time allowable for any given packet will be very small. In the following section,
we propose an algorithm that approximates the behavior of such a dropping
discipline using a simple FIFO queue, without the requirements of maintaining
packets in a sorted order or managing per-flow or per-class information.

Priority Dropping with a FIFO Queue: The problem of dropping packets
with lower incremental utility labels before packets with a higher incremental
utility can be approximated to the problem of dynamically computing a mini-
mum threshold value that a packet’s label must have, in order for a router to
forward it. We call this value the threshold utility, u;. We define threshold utility
as the minimum incremental utility that a packet must have for it to be accepted
by the router. The two key constraints on u, are that it must be maintained at a
value which will (a) result in enough packets being accepted to fully utilize the
link and (b) not cause buffer overflow at the router.

In Figure 3, R(u) is a monotonically decreasing function of the incremental
utility u. It represents the cumulative rate of all packets that are forwarded

3 A step in refers to a contiguous region of resource values with the same slope
4 This will be in addition to the FIFO queue, that is required to avoid any reordering
of packets.

6 N. Venkitaraman, J.P. Mysore, and M. Needham

R(u

C o

ug uy u

Fig. 3. Threshold Utility

through a link for a given threshold utility value, u;. So R(u;) = 3 37 r(uk),
where r(uy) is the rate of packets entering an output link with an incremental
utility label of uy. The threshold utility, u, is a value which satisfies the condition
R(uy) = C, where C is the capacity of the output link. Note that for a given R(u),
there may not exist a solution to R(u) = C because of discontinuities in R(u).
Also the function R(u) changes with time as flows with different utility functions
enter and leave the system and when existing flows change their sending rates.
Hence, tracking the function is not only expensive but may in fact be impossible.
So in theory, an algorithm that uses the value of a threshold utility for making
accept or drop decisions, cannot hope to replicate the result obtained by an
approach that involves sorting using per-flow state information. Our objective is
to obtain a reasonably close approximation of the threshold utility so that the
sum of utilities of flows serviced by the link closely tracks the optimal value,
while the capacity of the output link is fully utilized.

First, we give the intuition behind the algorithm that a router uses to main-
tain the threshold utility u, for an output link and then provide the pseudo code
for the algorithm. We then describe how it is used to make the forward or drop
decision on a new incoming packet.

The objectives of the algorithm are (i) to maintain the value of . such that
for the given link capacity the sum of the utilities of all the accepted packets
is close to the maximum value possible, and (ii) to maintain the queue length
around a specified lower and upper threshold values(qin and guen). There are
three key components in the algorithm. (a) to decide whether to increase, de-
crease or maintain the current value of u;, (b) to compute the quantum of change
and (c) to decide how often u, should be changed. The key factors that deter-
mine these decisions are avg_glen, an average value of the queue length computed
(well known methods for computing the average, like the exponential averaging
technique can be used for this purpose) and gais, the difference between the
virtual queue length value at the current time and when the threshold u, was
last updated. The virtual queue length is a value that is increased on an enqueue
event by the size of the packet received if its u; > u;. The value is decreased by
the size of the packet either on a deque or during a successful enque of a packet

A Core-Stateless Utility Based Rate Allocation Framework 7

with a label less than than the u,?. The latter enables corrective action when
packets are being dropped due to a incorrect(large) threshold. Thus, the virtual
queue length is simply a value that increases and decreases without the physical
constraints of a real queue. Maintaining a virtual queue length in this manner
provides an accurate estimate of the state of congestion in the system. Note
that even when the real queue overflows, the virtual queue length will increase,
resulting in a positive gq;s reflecting the level of congestion. Similarly, when the
u, value is very large and no packets are being accepted, the virtual queue length
will decrease, resulting in a negative value of gais. gais reflects the rate at which
the length of the virtual queue is changing. When there is a sudden change in
R(u), qais provides a early warning signal which indicates that u, may need to
be modified. However, if the link state changes from uncongested to congested
slowly, the absolute value of gq4;y may remain small. But a value of avg_qlen that
is beyond the specified queue thresholds indicates that u, needs to be changed.

The quantum of change applied to u; is based on the amount of buffer space
left — given by the queue length, and the rate at which the system is changing ~
given by ga;s. Congestion build up, is equivalent to R(u) in Fig. 3 shifting to the
right. To increase the threshold, we use a heuristic to determine a target value
Uitge such that R(utg:) < C. This is used to significantly reduce the probability
of tail drops. Currently this value of u;;g is based on the average u; values of
all the accepted packets and the maximum u; value seen in the last epoch. The
value of u, is then incremented in step sizes that are based on the estimated
amount of time left before the buffer overflows. Similar computation is done
to decrease the threshold where ug.q is based on the average u; values of all
packets dropped in the last epoch. The pseudocode for updating the threshold
is as follows:

if (avg_glen < qun)or(gais < —Kg)
time.left = avg_qlen/q4is
change = (u¢ — ugege)/timere ft
else if (avg_glen > guin)or(qais > Kg)
time_left = (qiim — avg-glen)/qais
change = (uitgs — us)/time_ left
u_t+ = change

There are two events that trigger a call to the update-threshold() function.
They are (a) whenever |ga;s| > K, and (b) a periodic call at the end of a fixed size
epoch. The first trigger ensures fast reaction. The value of K, is a configurable
parameter and is set such that we do not misinterpret a typical packet burst
as congestion. Also, it provides a self-healing feedback loop. For instance, when
congestion is receding, if we decrease u, by steps that are smaller than optimal,
this trigger will result in the change being applied more often. Case (b) ensures
that during steady state, the value of u, is adjusted so that the queue length is
maintained within the specified queue thresholds.

5 This case would occur when link is not congested but u. is incorrectly large.

8 N. Venkitaraman, J.P. Mysore, and M. Needham

The forwarding algorithm is very simple. When the link is in a congested
state(avg_glen > qup), if u; < u; the packet is dropped. Otherwise the packet is
accepted.

3.3 Variants of SURF

The framework described above is flexible and can be tailored to specific needs
by choosing appropriate utility functions. The labeling algorithms at the edge
router can be tailored to label the incremental utilities for specific cases. The
forwarding and threshold computation algorithms remain the same. This is a big
advantage. In this section, we describe a few specific cases of the edge labeling
algorithm and provide the pseudo-code.

Fair Bandwidth Allocation. A common notion of fair bandwidth allocation
is one in which all flows that are bottle necked at a link get the same rate, called
the fair share rate. To achieve such an allocation, all we need to do is assign
identical utility functions with constantly decreasing incremental utilities to all
flows. For ease of understanding we provide a labeling procedure for an idealized
bit-by-bit fluid model. Let u,,,, be the maximum possible value of incremental
utility.

label(pkt)
served+ =1
pkt.u; = Umar — served

where the value of served is reset to 0, after a fixed size labeling epoch, say 1
sec. Let us suppose that the rate at which each flow is sending bits is constant.
The result of this labeling algorithm then is that during any given second, the
bits from a flow sending at rate r bits per second are marked sequentially from
Umaz 10 Umaz — 7. The router in a bottleneck link will compute the threshold
u; and drop packets from all flows with u; < u;. This results in fair bandwidth
allocation. This is an alternate implementation of CSFQ [14]. As we will see in
the next section, a key advantage of this approach is that it allows us to convey
rate information as well as intra-flow utility using the same field in the packet
header.

Intra-flow Priorities. Consider a flow, i, which is sending packets with mul-
tiple priority levels at a cumulative rate r;. For instance, the levels could be
I, P and B frames in an MPEG video stream or layers in a layered multicast
stream [9]. The utility function corresponding to the flow will be similar to U4
in Figure 1. Independent of the number of layers and rate allocated to other
flows, if flow i’s packets need to dropped, we would like the packets from layer
j+1 to be dropped before layer j. To achieve such a dropping behavior, the end
hosts must communicate the relative priority of a packet to the edge router. A
simple mechanism to accomplish this could be in the form of a field in the packet
header. The desired dropping behavior honoring intra-flow drop priorities can be

A Core-Stateless Utility Based Rate Allocation Framework 9

achieved in the proposed framework by using a labeling procedure similar to the
pseudo-code given below. The forwarding and threshold computation algorithms
remain unchanged.

label(pkt)
p = pkt.intraflow_priority
served([p]+ = pkt.size
cum_rate[p] = cum_ratelp — 1] + est_rate[p)
if (served[p] < cum_ratelp — 1}) or
(served[p] > cum_rate[p))
served[p] = cum_rate[p — 1]
pkt.u; = u(served[p])

Figure 4 describes the above pseudo-code. In the code given above, est_rate [p]
is the estimated rate at which a flow is sending packets of a certain priority level p
and cum._rate[p] is simply >_}_, est_rate[p](assuming 1 to be the highest priority
level). est_rate[p] can be computed using a method similar to the one used in
[14]. served|p] maps the packet received onto the appropriate region in its utility
function. u(r) gives the incremental utility of the region corresponding to rate r.

U(r)

. est_rate[p]

’

cum_rate[p—1] cum_rate[p]

Fig. 4. Labeling Algorithm

Improving TCP Performance. The labeling algorithm used by the edge
router can be tailored to improve the performance of TCP. Specifically, it can
mitigate two primary causes of a reduction in throughput — (i) drop of a re-
transmitted packet (ii) back to back drops of multiple packets. To accomplish
the former, the labeling procedure can label retransmitted packets with the
highest allowable incremental utility for the flow; and to accomplish the latter,
the labeling algorithm can assign consecutive packets to different priority levels
thereby reducing the chances of back-to-back drops. Such an implicit assignment
of interleaved priorities is also useful for audio streams, whose perceived quality
improves when back-to-back drops are avoided.

