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Preface to Volume Il

Why a second volume? Why not write a separate, unassociated, book covering
mixed-signal circuit design? The answer to these questions comes from my desire o keep
from duplicating material available in CMOS Circuit Design, Layout, and Simulation (the,
sometimes affectionately called, "purple” book containing the first 29 chapters). My goal,
when writing this second volume, was to provide a quality textbook and reference that
contains material that isn't covered in other textbooks and to couple this material with
online learning aids. The supporting companion website, http://cmosedu.com, provides
worked solutions to the problems, SPICE simulation netlist examples, and discussions
concerning mixed-signal circuit design.

Book Organization

The power of a mixed-signal circuit design, and perhaps the reason they are replacing
analog-only designs in the implementation of analog interfaces, comes from the marriage
of analog circuits with digital signal processing. Chapter 30 uses the topic of data
converter modeling as a vehicle to illustrate some fundamental signal processing topics. In
addition, models are developed to aid in the understanding of quantization noise. Chapter
31 discusses signal-to-noise ratio (SNR) and ways of improving SNR using filtering
(averaging). The chapter provides a practical discussion of some of the basic tools the
mixed-signal designer uses to improve SNR. Decimation, interpolation, and feedback (and
the concept of pushing quantization noise to higher-frequencies, i.., noise-shaping, so that
it can be filtered out using a digital filter) are also discussed. Because of the importance of
noise-shaping to the design of analog interfaces Ch. 32 is devoted entirely to noise-shaping
data converters (often called delta-sigma or sigma-delta data converters). The presentation
mixes theory with practical implementations and examples to illustrate the operation of
these data converters.



XVi Preface

Chapter 33 covers circuit design using submicron CMOS devices. This chapter
was born, in part, after | was asked, "Why didn't you use a more modern CMOS process
in the purple book?" Submicron devices don't follow the square-law MOSFET model and
so hand calculations based on equations derived from the square-law models are
somewhat meaningless. 1 quickly realized, however, that many designers don't do hand
calculations and so the significant deviations between long- and short-channel behavior
aren't readily apparent. Similarly, students are often asked to compare their hand
calculations to SPICE simulation results using the level 1 model. Of course, the
simulations and hand calculations match but have little, if anything, to do with the
performance of the submicron CMOS circuits in actual silicon.

At the risk of stating the obvious, accurate models for submicron CMOS devices
are extremely important, In Ch. 33 the EKV model is used. The EKV model does a good
job of modeling the device's transition from weak to strong inversion. This is important
when simulating modern data converter or mixed-signal circuits where the threshold
voltage doesn't scale with the power supply voltage (i.e., the circuitry is operating a larger
percentage of the time in the subthreshold region). As seen in Ch. 33, hand calculations
can be performed with transconductance or output resistance values read off of plots
generated experimentally or from simulations using the accurate EKV model.

Chapter 34 covers the implementation of data converters. Its purpose is to provide
ideas and discussions for implementing the data converter topologies discussed in Ch. 29.
Matching, offsets, gains, bandwidths, and topologies are discussed to provide insight into
the design of Nyquist rate data converters.

Chapter 35 covers the design of integrated filters. This topic is a book in itself so
I've picked the most relevant subjects and attempted to provide practical insight useful
when implementing the filters in CMOS technology. The material is complete and useful
enough so that, once the material in the chapter is understood, the reader should have little
difficulty understanding the merits or trade-offs of any filtering topology. A special twist
on the material is the way the topic of digital filtering is presented (hopefully, it is very
practical).

Significant effort, in these first six chapters, has been put into integrating theory
and examples with simulation results (using actual numbers, i.e., not just symbolic
representations). The reader serious about learning the material will find the ability to
modify a simulation netlist (downloaded from hitp://cmosedu.com) and look at the
resulting output a very useful learning tool. However, while hand calculations and
simulations are very important when learning and designing CMOS circuits, equally, if not
more, important is the actual building and testing of the mixed-signal circuits. Chapter 36
provides some examples of actual circuits built "at the bench” to provoke thought and
interest. The hope is that instead of just simulating a design, the engineer/student may also
want to build and test a representation of the circuit using discrete components. While
these discrete circuits won't provide an exact representation of the actual integrated
circuits, they can provide insight into the limitations of a particular design. They can also
be used to get aquainted with the test equipment and the possible loading that might be
introduced into the circuit when probing.
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Chapter

30

Data Converter Modeling

In this chapter we continue our discussion of data converters by discussing methods to
model ideal data converters and their components using SPICE. The main goal of this
chapter is to provide tools for evaluating mixed-signal designs with large complexity,
which can be used in design evaluation and later in the book. In particular, we will
generate SPICE models, using behavioral elements, for ideal analog-to-digital converters
(ADCs) and digital-to-analog converters (DACs) blocks. This allows us to analyze the
performance of a mixed-signal circuit block in a SPICE simulation within a reasonable
amount of time. For example, if we have designed a DAC at the transistor level and want
to use SPICE to simulate its operation, under various temperatures and matching
conditions, we may apply a digital input code generated from our ideal ADC with a
sinewave input as seen in Fig. 30.1. Similarly, given a digital signal processing (DSP)
system, we can drop our ideal DAC into the simulation at any point where there is a digital
word and get an analog waveform output.

SPICE behavioral model SPICE transistor-level model
of an ideal ADC of a DAC

f\}ln deal Npits l?rﬁgr | Out %
ADC
/ test

Digital code corresponding
to the sinewave input

Clock, f; A

Figure 30.1 Generating the sinewave digital code for DAC simulation with an ideal ADC.



2 CMOS Mixed-Signal Circuit Design

Also, in this chapter we look at how the analog-to-digital and digital-to-analog
conversion process affects the signals in the system. Figure 30.2 shows the basic
conversion process. We will make extensive use of the spectral analysis capability (discrete
fourier transform or DFT) available in SPICE to look at the digital data (and analog
signals) in the frequency domain.

v Analog Digital v v
Y o
\ g :;':.\4 . \ l t

In_j AAF S/H ADC{—#— DSP

t
l Anti-aliasing filter

DAC RCF |—Qut

o

Sample and hold Smoothing or
reconstruction filter

Figure 30.2 Signals resulting from A/D and D/A conversion in a mixed-signal system.

30.1 Sampling and Aliasing: A Modeling Approach

In this section we discuss how sampling a signal changes the signal's spectrum. We also
discuss how to model the sampling process in SPICE.

30.1.1 Impuise Sampling

Consider the simple sampling gate shown in Fig. 30.3a. Let's assume we apply a sinewave
input, x(#), to this sampling gate of the form, V,sin(2nf;, - 1) (for the moment, a single
frequency input). The output of the sampling gate (a.k.a. sampler), (1), is the product of
the input and a sampling unit impulse signal or

W= 35 Visin(@fu-nT.) 8,(-nT)  (0.D)

<

x(f) = V,sin (2fn - 1)

v
\Jt lII
In . Sampler output
\ In t Jo\

Sampleroutput ...
W) = x(1) - 8,(t—nTy) Sampling impluses

Sampling impluses

®)
au(t - "Ts) (a)

Figure 30.3 (a) Simple sampling gate and (b) SPICE implementation of a sampling gate.



