%o MQW

peic il

Glenford J. Myers

[A A A

M S

Software Reliability

Principles and Practices

Glenford J. Myers

Staff Member,
IBM Svstems Research Institute

Lecturer in Computer Science.
Polvtechnic Institute of New York

A WILEY-INTERSCIENCE PUBLICATION

JOHN WILEY & SONS
New York ¢ London Sydney ¢ Torontc

oo/ 77
5505197

Fo / 9

I

CL -

Copyright © 1976 by John Wiley & Sons, Inc.
All rights reserved. Published simultaneously in Canada.

No part of this book may be reproduced by anv means,
nor transmitted, nor translated into a machine language
without the written permission of the publisher.

This publication is designed to provide accurate and
authoritative information in regard to the subject

matter covered. It is sold with the understanding that

the publisher is not engaged in rendering legal, account-

ing, or other professional service. If legal advice or

other expert assistance is required, the services of a
competent professional person should be sought.

From a Declaration of Principles jointly adopted by a
Committee of the American Bar Association and a Committee
of Publishers.

Library of Congress Cataloging in Publication Data:
Myers, Glenford J 1946-
Software reliability.

(Business data processing, a Wiley series)

“A Wiley-Interscience publication.”
Bibliography: p.

1. Computer programs—Reliability. 1. Title.

QA76.6.M93 001.6°425 76-22202
ISBN 0-471-62765-8

Printed in the United States ot America
10987654321

Preface

In the late 1960s, the fact that computer systems can make mistakes,
and that these mistakes can have an effect on our lives, received a
considerable amount of attention in the press. A typical “COMPUTER
GOOFS!”’ news story might have described a department store cus-
tomer who received a bill for $0.00, the customer’s attempts to com-
municate this error to the store, and an endless stream of notices from
the computer threatening to terminate the customer’s account unless
the bill was paid. Often, the easiest solution was actually to mail a
check to the store for $0.00 or, as in one case, to have the mcxdent pub-
licized in the financial section of the New York Times.

Problems like this one are certainly undesirable, but their harm is
usually limited to personal inconvenience. I would rather have an argu-
ment with a department store computer tham be caught in a runaway
computer-controlled train where a programming error is causing the
‘train to attempt to accelerate to 1000 kilometers an hour instead of 100
kilometers an hour. In today’s world errors such as this are now pos-
sible. Because data processing is touching our lives to an increasing
extent, computer errors can now have such consequences as property
damage, invasion of privacy, personal injury,.and even loss of life.

This book was written to describe solutiens to the problem of unre-
liable software. Every aspect of software production is examined, and
solutions are expressed in two forms: principles and practices. Prin-
ciples are major strategical approaches to the production of reliable
software. Practices are smaller-scale tactical solutions to various
aspects of the unreliability problem.

The book consists of four major parts. The first part defines
software reliability, discusses the principal causes of software errors,
and attempts to motivate the reader to read the remainder of the book.
Part 2 contains a large set of principles.and practices used in the design
of reliable software. I use the word design in a broad sense, starting with

vii

vili PREFACE

. the definition of requirements for a software system and ending with
the coding of indivicual program statements.

Part 3 covers the broad area of software testing, a set of processes
that consume vast percentages of data processing budgets and yet about
which very little is known by most people. Although the key contributor
to reliability is precise design, testing plays an important role in
software reliability. A large set of proven principles and practices for
testing is discussed.

Computer professionals will recognize that there are additional
variables that affect reliability; many of these are discussed in Part 4.
For instance, organizational structures, personalities, attitudes,
management plans and motivation, programming tools, and the work
environment all have a significant bearing on reliability. Part 4 also
describes problems in current programming languages and computer
architectures and suggests solutions to these problems. The subjects of
mathematically proving program correctness and predictive techniques
(reliability models) are also discussed.

This book only treats software reliability from the point of view of
software errors. A large topic, the use of software to correct or circum-
vent hardware failures such as input/output device failures, is not
covered in this book. Although this topic must obviously be considered
in total system reliability, it is excluded because it is a separable topic
that deserves the attention of another book and, in comparison to
software reliability, it is fairly well understood.

This book should benefit anyone having an interest in the produc-
tion of reliable software. People directly involved in software produc-
tion, such as programmers, analysts, test personnel, programming
managers, and data processing managers, should benefit the most.
Programming language designers should find the material on program-
ming languages, programming style, and computer architecture of
interest. Software users, particularly those responsible for purchasing
software or writing contracts for the development of new software, will
gain insight into reliability and how it may affect their use of computer
systems. Researchers should find all the material useful in obtaining an
understanding of the reliability problem, examining the usefulness of
past research, and understanding the promising areas for future
research.

The book should be useful both as a reference book and as a text.
The book will expose the university student to many of the real-world
problems of software development. As a textbook, it can be used in
senior or graduate-level computer science or software engineering
courses on software development, providing that it is supplemented

PREFACE ix

with actual experience such as a class project. I have used all of this
material in graduate-level courses on software reliability at the IBM
Systems Research Institute and the Polytechnic Institute of New York.

I thank many of my collegues at the IBM Systems Research
Institute for valuable suggestions on the book. In particular, R.
Goldberg and C. H. Haspel provided constructive criticism of most of
the book, and B. G. Weitzenhoffer, C. J. Bontempo, and J. E. Flanagan
provided valuable advice on material in Part IV. I must point out that
certain material in the book can be considered as controversial; the
opinions and views expressed are solely my own and do not necessarily
represent the opinions and views of the people mentioned above nor the
IBM Corporation.

GLENFORD J. MYERS

New York, New York
April 1976

1.

PART 1

Concepts of
Software Reliability

Definition of Software Reliability

Is the Moon an Enemy Rocket? 4

What is an Error? 4

What is Reliability? 7

Are Engineers Smarter than Programmers? 8
Hardware Reliability, 9

The High Cost of Software, 11

Software Experimentation, 12

References, 14

Errors—Their Causes and Consequences

The Macroscopic Translation Model, 17
The Microscopic Translation Model, 21
Consequences of Errors, 23

References, 25

PART 2

Designing Reliable Software

Basic Design Principles

Four Approaches to Reliability, 30
The Design Processes, 34
Complexity, 37

The User Relationship, 38
Problem Solving, 40

Contents

29

X1

xii

CONTENTS

Design Correctness, 43
References, 45

Requirements, Objectives, and Specifications

Establishing Requirements, 46
Software Objectives, 48

Understanding the Tradeoffs, 51
Writing Software Objectives, 56
External Design, 59

Designing the User Interface, 61
Writing the External Specification, 65
Verifying the External Specification, 69
Planning for Change, 72

References, 73

System Architecture

Levels of Abstraction, 75
Port-Driven Subsystems, 79
Sequential Programs, 85
Documentation, 85
Verification, 86
References, 87

Program Structure Design

Module Independence, 89
Module Strength, 89

Module Coupling, 92

Further Guidelines, 95
Composite Analysis, 97
Composite Analysis Example, 98
Verification, 108

References, 109

Design Practices

Passive Fault Detection, 110 -
Active Fault Detection, 114

Fault Correction and Tolerance, 116
Error Isolation, 118

Handling Hardware Fatlures, 120
References, 121

46

74

88

110

8.

10.

CONTENTS

Module Design and Coding

Module External Design, 124

Module Logic Design, 126

Structured Programming and Step-Wise Refinement, 129
Defensive Programming, 138

High-Level Languages, 139

Attitude, 143

Documentation, 145

Standards, 146

Verification, 147

References, 149

Programming Style

Program Clarity, 152
Using the Language, 155
Microefficiencies, 156
Comments, 160

Data Definitions, 161
Program Structure, 164
References, 165

PART 3
Software Testillg

Testing Principles

Basic Definitions, 172

Testing Philosophies, 173
Module Integration, 178
Bottom-Up Testing, 178
Top-Down Testing, 181
Modified Top-Down Testing, 184
Big-Bang Testing, 185
Sandwich Testing, 186
Modified Sandwich Testing, 187
Which One is Best? 187

Testing Axioms, 189
References, 195

xiii

123

151

169

xiv

11.

12.

13.

14.

15.

CONTENTS

Module Testing

Test Case Design, 196

Test Execution, 206

Module Driver Tools, 208
Static Flow Analysis, 212
Run-Time Tools, 212
Quadratic Equation Tests, 214
References, 215

Function and System Testing

External Function Testing, 216
Cause-Effect Graphing, 218
System Integration, 227
System Testing, 230

Function and System Testing Tools, 238

Test Planning and Control, 242
Acceptance Testing, 244
Installation Testing, 245
References, 245

Debugging

Finding the Error, 247
Making the Correction, 251
Debugging Tools, 252

Monitoring the Debugging Process, 257

References, 258

PART 4

Additional Topics in Software Reliability

Management Techniques for Reliability

Organization and Staffing, 264
Programming Librarians, 267
Programming Teams, 269

The Elements of a Good Manager, 272
References, 273

Programming Languages and Reliability

Uniformity, 278
Simplicity, 281

196

216

247

263

16.

17.

18.

19.

CONTENTS

Data Declaration, 282

Data Types and Conversion, 284
Procedures and Data Scoping, 287
Control Structures, 289

Data Operations, 291

Compile-Time Error Detection, 292
Execution-Time Error Detection, 295
References, 296

Computer Architecture and Reliability

Memory Structure, 300

Program Structure, 304
Debugging Aids, 306

High-Level Language Machines, 307
References, 308

Proving Program Correctness 310

The Method of Inductive Assertions, 311

What Can and Cannot be Proved by Proofs, 319
Formal and Automated Proofs, 322

Additional Applications of Proof Techniques, 324
References, 327

Reliability Models

A Reliability Growth Model, 330
Other Probabilistic Models 335
An Error Seeding Model, 336
Simple Intuitive Models, 338
Complexity Models, 340
References, 342

Software Support Systems

Program Library Systems, 344
Design Aids, 351 : :
References, 353

Index

Xw

298

329

344

355

PART 1

Concepts of
Software Reliability

Definition of
Software Reliability

T he most significant problem facing the data
processing business today is the software prob-
lem that is manifested in two major complaints:
software is too expensive and software is unre-
liable. Most computer professionals recognize
the former problem as largely a symptom of the
latter. Because of the unreliable nature of
today’s software, considerable expense is incur-
red in software testing and servicing. Although
this book focuses on the problem of unreliable
software, the problem of high cost is indirectly
confronted because of its relationship to unre-
liability.

It is interesting to note that the software

reliability problem as it exists today was
observed in the early days of computing:

Those who regularly code for fast electronic com-
puters will have learned from bitter experience
that a large fraction of the time spent in preparing
calculations for the machine is taken up in remov-
ing the blunders that have been made in drawing
up the programme. With the aid of common sense
and checking subroutines the majority of mistakes
are quickly found and rectified. Some errors,
however, are sufficiently obscure to escape detec-
tion for a surprisingly long time [1].

This observation was published by three
British mathematicians in 1952. Although

5505197

CHAPTER 1

4 DEFINITION OF SOFTWARE RELIABILITY

software errors were encountered before 1952, this seems to be the first
recognition of the reliability problem, that is, that a considerable amount
of time is required for testing and, even after this, some software errors
still remain undetected.

IS THE MOON AN ENEMY ROCKET?

The immediate problem encountered in dealing with software reli-
ability is one of definition: What is a software error and what is
software reliability? Agreeing on standard definitions is important for
avoiding such problems as a system user’s stating that an error exists in
his system and the system developer’s replying, “No, it was designed
that way.”

The Ballistic Missile Early Warning System is supposed to monitor
objects moving toward the United States and, if the object is
unidentified, to initiate a sequence of defensive procedures starting with
attempts to establish communications with the object and-progressing
potentially through physical interception and retaliation. An’early ver-
sion of this system mistook the rising moon for a missile heading over
the northern hemisphere. Is this an error? From the user’s (Defense
Department’s) point of view, it is. From the system developer’s point of
view, it may not be. The system developer may take the position that
the requ1rements or specifications stated that action should be initiated
for any moving object appearing over the horizon that is notr known
friendly aircraft.

The point here is that different people have different views as to
what constitutes a software error. Before we can begin discussing
methods to eliminate software errors, we have to establish a definition
of software errors. Rather than developing a definition from scratch, we
can benefit by analyzihg common definitions of software errors and
determining their weaknesses.

WHAT IS AN ERROR?

One common definition is that a software error occurs when the
software does not perform according to its specifications. This definition
has one fundamental flaw: it tacitly assumes that the specifications are
correct. This is rarely, if ever, a valid assumption; one of the major
sources of errors is the writing of specifications. If the software product

WHAT IS AN ERROR? 5

does not perform according to its specifications, an error is probably
present. However, if the product does perform according to its specifica-
tions, we cannot say that the product has no errors.

A second common definition is that an error occurs when the
software does not perform according to its specifications providing that
it is used within its design limits. This definition is actually poorer than .
the first one. If a system is accidentally used beyond its design limits,
the system must exhibit some reasonable behavior. If not, it has an
error. Consider an air-traffic-control system that is tracking and coor-
dinating aircraft over a particular geographic sector. Suppose that the
original contract for the system specified that the system should be able
to simultaneously handle up to 200 aircraft. However, on one particular
day and for some conceivable reason, 201 aircraft appear in this sector.
If the software system performs unexpectedly, say it forgets about one
plane or aborts, then the software contains an error, even though it is
not being used within its design limits.

A third possible definition is that an error occurs when the software
does not behave according to the official documentation or publications
supplied to the user. Unfortunately, this definition also has several
flaws. There exists the possibility that the software does behave accord-
ing to the official publications but errors are present because both the
software and the publications zre in error. A second problem occurs
because of the tendency of user publications to describe only the
expected and planned use of the software. Suppose that we have a user
manual for a time-sharing system that states, “To enter a new com-
mand press the attention key once and type the command.” Suppose
that a user presses the attention key twice by accident and the software
system fails because its designers did not plan for this condition. The
system obviously contains an error, but we cannot really state that the
system is not behaving according to its publications.

The last definition that is sometimes used defines an error as a failure
of the software to perform according to the original contract or docu-
ment of user requirements. Although this definition is an improvement
over the previous three, it also has several flaws. If the user require-
ments state that the system should have a software error mean-time-to-
failure of 100 hours and the actual operational system proves to have a
mean-time-to-failure of 150 hours, the system still has errors (because
its mean-time-to-failure is finite), even though it exceeds the user
requirements. Also, written user requirements are rarely detailed
enough to describe the desired behavior of the software under all possi-
ble circumstances.

6 DEFINITION OF SOFTWARE RELIABILITY

There is, however, a reasonable definition of a software error that
solves the aforementioned problems:

A software error is present when the software does not do what the user
reasonably expects it to do. A software failure is an occurrence of a
software error. '

I expect two reactions to this definition. The software user’s reaction
will be, “Precisely!” The software developer may react with, ‘“The
definition is impractical, for how can I possibly know what the user
reasonably expects?”’ The point is that the software developer, to design
a successful system, must always understand what the system users
“reasonably expect.” '

The word “‘reasonably” was placed in the definition to exclude such
situations as a person’s walking up to an information retrieval terminal
in a public library and asking it to determine how much money he has
in his checking account at the local bank. The word “user” describes
any human being that is entering input into the system, examining
output, or interacting with the system in any other way. A large
software system ({(application programs, operating system, compilers,
utility programs, and so on) will have a large number of different users,
such as people communicating with the software through remote termi-
nals or the mails (often people with no knowledge of computers or
programming), application programmers, system programmers, and
system operators.

The reader should now be able to grasp an elusive characteristic of
software reliability: software errors are not an inherent property of
software. That is, no matter how long we stare at (or test, or “prove”) a
program (or a program and its specifications), we can never find all of
its errors. We may find a few errors, such as an endless loop, but,
because of the basic nature of software errors, we can never expect to
find them all. In short, the presence of an error is a function of both the
software and the expectations of its users.

Although I will use this definition as the basic definition of a
software error, it does have at least one flaw. Consider an airlines
reservation terminal that instructs the clerk to “ENTER FLIGHT
‘NUMBER AND DATE” to which he responds by entering
“239. MAY10.” The system responds with the message “INCORRECT
DATE” because it expected the date in the form 10MAY. Is this a
software error? According to our definition it may be, but I say it is not; it
is probably a human factors problem. We could broaden the definition to
cover situations such as this one by viewing them as human factors

