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Preface

The study of transmission line theory in electrical engineering curricula is usu-
ally limited to considerations of the circuit properties of lengths of transmission
line with given properties.. Unfortunately, this is no longer adequate. There isa
continuing effort in the electronics industry to build smaller circuits that operate
at a higher frequency, or faster, than last year’s version. Microwave integrated
circuit technology design techniques are tending more and more toward stripline
or microstrip designs on high dielectric constant ceramic substrates. The result
of this trend, insofar as the circuit designer is concerned, is that almost every
interconnection in a circuit will exhibit transmission line properties. An immedi-
ate corollary is that if circuits are to be well designed, the transmission lines
in the circuit must be appropriately treated as part of the circuit. It is no lon-
ger possible to separate the transmission line user from the transmission line
designer—not only are the lines present, but their properties are functions of
the circuit layout itself.

The purpose of this book is to extend the initial treatment of transmission line
theory received by most electrical engineers to the point where transmissipn line
effects can be properly considered, and transmission line properties can be cal--
culated as a function of materials and geometries. Properties of stripline and
microstrip circuits are emphasized, since these are the two line types that emerge
naturally in the microwave integrated circuit-printed circuit layout.

This book is intended for students and engineers who have had some exposure
to transmission line theory. Although the properties of transmission lines are
derived from basic considerations, these derivations are brief—being intended as
a review—and the underlying justifications are assumed to be understood. That
is, it is assumed that the reader is familiar with the concepts of distributed cir-
cuits, wave propagation, and the constant interplay between field variables and
circuit variables that takes place in descriptions of distributed circuits.

Once the circuit designer has learned to treat the transmission lines in the cir-
cuit properly, it becomes possible to take advantage of the different circuit
functions that are realizable in single or coupled transmission line form. These
functions include ‘directional couplers, coupled line filters, and tapered line
impedance transformers. Since microwave integrated circuits are fabricated using
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viii Preface

some form of printed circuit technology, circuit functions obtained by using the
transmission lines that are printed along with the connecting lines are very
economical and repeatable, hence desirable.

An important tool of the transmission line designer is the digital computer.
The only practical way to design or analyze arbitrary transmissior: line geome-
tries is by means of some numerical procedure using a computer. Therefore
numerical approaches to transmission line analysis are treated in great detail,
with many examgples. On the other hand, no attempt has been made fo treat
exhaustively the number of different numerical approaches available. Instead,
several approaches were followed through many examples so that the reader
can see these approaches being applied to varying types of problems. In this
way there is a reasonable chance that some example resembles an actual problem
at hand and that a solution procedure, though possibly not the optimum one,
can be found for most problems.

At the end of each chapter is an annotated reading list. The comments should
help the interested reader to locate quickly a reference providing more detail
on a topic of interest than is contained on these pages.

I thank my wife, Tamara, and my colleague, Dr. Melvyn Slater, for their help
in structuring and reviewing the pages that follow. Without this help I could not
have completed the job.

LAWRENCE N. DWORSKY

Fort Lauderdale
August 1979
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1

The Transmission Line Equations

The electrical transmission line is an example of a one-dimensional propagatin:
electromagnetic wave system. The equations governing this system may be
derived from Maxwell’s equations, either directly or from a circuit theory point
of view. Although both these derivations lead to the same result it is instructiv>
to examine them consecutively so that the two approaches can be compared.

1.1 THE TRANSMISSION LINE: A DEFINITION

A transmission line can be rigorously defined as any structure that guides 2
propagating electromagnetic wave from point ¢ to point b. In other words, w
can regard a transmission line as a set of boundary conditions to Maxwell’s
equations that allow the description of a one-dimensional propagating wave
between two points.

The common use of the term “transmission line” is far more restrictive, I:
is usually required that the electrical length of the (transmission) line be at
least several percent of a wavelength at the highest frequency of interest. Also,
wave guides are excluded. That is, we require that the line propagate a signal a:
all frequencies from the frequency of interest down to and including dc, with
the line characteristics varying in a smaoth and continuous manner over this
frequency range.

The statement above requires further discussion. At de, an ideal (lossless)
transmission line is surrounded by electric and magnetic fields that are normal
both to each other and to the direction of energy propagation. This is the
common transverse electromagnetic (TEM) mode of propagation. This is not
to say, however, that a transmission line must propagate a signal in the TEM
mode. As is shown below, there are several types of transmission line that can-
not support TEM waves at frequencies other than zero. This situation arises

1
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2 The Transmission Line Equations

Symbol Common Name TEM Type? Transmission Line?

Coaxial cable Yes Yes

®

%////55///% Stripline Yes Yes

(b)

(e

Balanced two-wire line Yes Yes

Microstfip No Yes

W Slotline No Yes

le)

§

Rectangular wave guide No No

{

Figure 1 Six common structures for one-dimensional wave propagation.

when there i3 an inhomogeneous dielectric cross section of the line normal to the
direction of propagation. The transmission line definition given above is specif-
ically constructed to include lines of these types while excluding conventional
wave guides. :

Figure 1 shows cross-sectional views of six types of one-dimensional wave
guiding structures. The names usually associated with these (and many other)
wave guiding structures came about through the first applications of these struc-
tures, and unfortunately often bear very little descriptive relation to the struc-
tures themselves.

1.2 THE TRANSMISSION LINE EQUATIONS
FROM MAXWELL’S EQUATIONS

To find a solution to Maxwell’s equations specific enough to be compared with a
set of circuit equations, a specific example must be chosen. This example may be
any TEM system, or with certain approximations, any transmission line. As a
simple example, consider the coaxial cable shown in Figure 2. In most practical
cases the only propagating mode in coaxial cable is the TEM mode, and only
this mode is considered here.



1.2 The Transmission Line Equations from Maxwell’s Equations

Figure 2 Coaxial cable cross section.

Assume that all of space is linear, isotropic, and homogeneous. Maxwell’s equa-

tions are then

V:-D=p
V-B=0
3B
XE=-—
v at
VXH=J+QI—)
ot

where D = electric displacement vector
B = magnetic flux vector
E = electric field intensity vector
H = magnetic field intensity vector
J = electric current density vector
p = space charge density

Since the wave is propagating through a dielectric,

p=0

(1.1)
(1.2)

(1.3)

(1.4)

(1.5)



4 The Transmission Line Equations

Also,
B=uH (1.6)
D=¢E a7

where p and € are the (scalar) permeability and permittivity, respectively, of the
material.
Substituting the relationships above into Maxwell’s equations, we have

V-E=0 (1.8)
V-H=0 (1.9)

Since in the notation of Figure 2 the wave is propagating in the z direction,
both E and H must be in the plene normal to z. Therefoie, from the described
geometry )

E=a.fE,(r, t) (1.10)
H=a,H,(,1) (1.11)

where a, and a,, are unit vectors.
Substituting (1.10) and (1.11) into (1 .4), in cylindrical coordinates,

oH, 19 oF
X a. H z—g L pgq —— = r
VXa,Hy(r)=-a, Py a, . ar(rH,,) ae o

(1.12)

For a TEM mode, the z-directed term in (1.12) must vanish. This is because
Hy ~ 1/r, therefore a(rHy)/or = 0.
Equation 1.12 is now reduced to the scalar equation
o, ___oF,

=-g—* 13
az ot (1.13)

Integrating both sides of (1.13) about a circular path of radius r, where
a<r<b,wehave

3 [ 3 [
— =-= E 14
BZJ; H,rdy atJ:, eE, rdy (1.14)

By Ampere’s law the above then can be written as

ol a3 [
—a;=_é—t' e}E,rdqp (1.15)
0

where [ is the total current enclosed by the integration path—that is, the current
flowing in the center conductor of the coaxial cable.



1.2 The Transmission Line Equations from Maxwell's Equations 5

Multiplying and dividing the right-hard side ¢f {i.15) by a length A, and using
Gauss’ law, yields

al -13 [ )
o o

where g, is the charge per unit length enclosed by the cylindrical volume of
length /2 and radius 7. Since there is no free charge in the dielectric, this charge
must reside on the center conductor.

Let us define the capacitance per unit length of tle coaxial cable as C, where
C = q,/V. Since the electric field lines originatin: on the center conductor
terminate on the outer conductor, ¥ is the voltage Lvtween the inner and outer
conductors, measured at any given z.

Rewriting (1.16) in terms of 7, C, and V, we havc

o/ oV
—= - 1.17
oz ot ( )

Equation 1.17 is the first of the two transmission line equations. It couples the
two variables / and V. A second equation is necessary to solve for these variables.
This second transmission line equation is found by substituting (1.10) and (1.11)
into (1.3). As above, in cylindrical coordinates,

Oxag g e LBE &l 8B,

BT T Tt e MM T TR Ty (.18)

The z-directed term in (1.18) must be zero from symmetry considerations.
This leaves the scalar equation

9E, 0B,
5 ar (1.19)
Integrating (1.19) along a radial path from 7 =ato r =b, and at the same time
multiplying and dividing the right-hand side by the length h, yields
b b

19
2 Ear==2| mB,d :
az), Y war ) T (1.20)

The left-hand side of (I.20) can be identified as 8 V/dz, while the right-hand
side is 3%, /ds, where ¥, is the total magnetic flux per unit length passing
through the rectangle of length % and width b ~ 4. Defining the inductance per
unit length of the cable as L, where L = ®,,/I, (1.20) becomes

ov ol

oz ar (1.21)



6 The Transmission Line Equations

Equation 1.21, the second required transmission line equation, also couples the
variables / and V. Equations 1.21 and 1.17, together with the appropriate bound-
ary conditions, provide a complete description of the voltage and current waves
as they propagate along the transmission line.

Before examining the same transmission line from a circuit theory viewpoint,
let us consider some of the implications of the derivation above. If the inner
and outer conductors of the coaxial cable are perfect conductors, no electric
fields may exist within them. Therefore the transverse electric field £, must
exist only between the outer surface of the inner conductor and the inner sur-
face of the outer conductor. In other words, E, exists only in the dielectric
region separating the two conductors.

Similarly, since the current flowing in the conductors exists only on the outer
surface of the inner conductor and the inner surface of the outer conductor,
the magnetic field H, must exist only in the dielectric region between the
conductors. .

Thus it has been said that when dealing with perfect conductors, current flows
only along the surfaces of the conductors at which a magnetic field is present,
and an electric field will exist only between the charged surfaces at which this
electric tield terminates. In the case of real metals, which are usually very good
but not perfect conductors, the electric and magnetic fields will be shown to
penetrate the surfaces slightly. Similarly, the currents will be shown to flow in a
thin “skin” at and just below the same surfaces.

Poynting’s vector, E X H, predicts the power flow in the dielectric. Integrating
Poynting’s vector over the cross-sectional area of the dielectric yields the
total power flow across any cross section of the line. This result must, of
course, agree with the power flow calculation that is obtained from the volt-
age and current. The voltage-current calculation, however, does not bring out
the point that the power is flowing in the dielectric—not in the conductors.
Restating this observation, electric power does not flow in “wires”; rather, it
flows in the fields surrounding the wires. As the coaxial cable example above
demonstrated, the wires provide the boundary conditions for establishing a one-
dimensional TEM wave solution to Maxwell’s equations—that is, they guide the
power flow.

1.3 THE TRANSMISSION LINE EQUATIONS
FROM KIRCHHOFF'S EQUATIONS

The laws of circuit theory, Kirchhoff’s voltage and current laws, can be used to
derive the transmission line equations. To accomplish this, it is necessary to
visualize a transmission line as a chain of discrete inductors and capacitors very
closely spaced in a lattice structure. Figure 3 presents two such structures.
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LAz LAz Vir LAz

Vi i
/Y e 2 s W

Y Y
1l = 1 =
,lCAz J'CAZ
(@)

LAz/2  y  LAY2 . L2 La%/2
1.3 1,41
————YYA A O A
1l — 1
2caz 2CAz 2Caz
204z g, 2CAz 2CAz
.
Lasi2 Yoo La2 V2 pagn LA3/2
(b)

Figure 3 Balanced () and unbalanced (¢) circuit models of a transmission line.

When a transmission line consists of two symmetrical conductors and a sepa-
rate ground, or voltage reference, the transmission line is said to be balanced
(see, e.g., Figure 1¢). In this case if the pair of conductors has a total inductance
per unit length of L, the inductance per unit length of each conductor must be
L/2. If the capacitance per unit length between the conductors is C, to establish
a ground reference symmetrically between the conductors, the capacitance per
unit length to ground of -each conductor is 2C. Note that the separate ground
often is not shown explicitly, as is the case in Figure 1c.

If the transmission line is represented by a chain of series inductors of value
LAz{2 and a chain of shunt capacitors of value 2CAz, the line can be approx-
imated by the circuit of Figure 3b. The nodes are separated by the small distance
Az, and the node subscript i locates the node on the line according to z = i(Az).

In many cases it is convenient to consider one of the conductors of a trans-
mission line as the voltage reference. This is particularly true when the geometry
of the line causes the inductance per unit length to be much greater in one con-
ductor than in the other. The conductor with the relatively small inductance is
then taken as the voltage reference. When this is done, the total series inductance
per unit length and the total shunt capacitance per unit length must be ascribed
to the nonreference, or ‘“‘ungrounded” conductor. Figure 3a depicts a trans-
mission line, again as a chain of incremental elements. The most common
example of this type of line is the coaxial cable. The outer conductor’s induc-
tance is much smaller than the inner conductor’s inductance. The outer con-
ductor is therefore chosen as the ground or reference line.

The two choices described above and shown in Figure 3 are often referred to
as “balanced” and *‘unbalanced” transmission lines. This is because the voltages



8 The Transmission Line Equations

on each wire in the balanced line (Figure 3b) are equal in magnitude and oppo-
site in sign when referred to the ground (reference) line, whereas the voltage on
the nonreference wire of the unbalanced line (Figure 3a) is the only nonzero
voltage present.

The circuit equations that follow apply to both the balanced and the un-
balanced lines. Consequently, there is no need to designate either case in the
discussion. ,

Referring to Figure 3, the voltage drop between nodesiand i + 1 is

ol;,
Vier - Vi=-LAz —a—'t—‘ (1.22)
The current through the capacitor at node i is
v,
Ii - 1i+l = C’AZ _é:“ (123)

Rearranging the two equations above into a more convenient form, we write

Vi+1 B Vi=_L aliﬂ

24

Az ot (1.24)

i - 1 av;

e S Torat 1.25
Az ¢ at ( )

Assume that the increment Az approaches zero. The left-hand side of both
(1.24) and (1.25) would approach partial derivatives with respect to z because
as Az gets smaller, the (i + 1)th node is getting closer to the ith node. In the
limit, (1.24) and (1.25) are identical to (1.17) and (1.21), namely,

ol ¥V
3z ot @17
14 ol
32 = o (1.21)

When the ground return (voltage reference) path completely encloses the
* other wire(s) of a transmission line, the line is referred to as a shielded trans-
mission line. In this case all electric and magnetic field lines terminate within
the confines of the line cross section. Conversely, a balanced line can depend
on the outside world for ground return paths. In this case; the line is unshielded
and the field lines may extend an undeterminable distance from the line.
A distinction should be made at this point between an unshielded balanced
line—even with ground returns only at infinity—and an antenna. Whereas a
balanced, unshielded line has electric and magnetic fields that extend indef-



1.4 Low Pass Filters and Simulated Transmission Lines B

initely, all power flow is along the line with no component normal to the line.
This one-dimensional TEM wave is the proper transmission line wave. If, on the
other hand, there were to exist a discontinuity or irregularity along the line,
the fields may be disturbed in a manner that would cause radiation normal to
the line. In this case the line would be acting, at least partially, as an antenna.
[t must be emphasized that this is a flaw condition. not the nature of the.sysrem.

In the case of the balanced line, a disturbance that might cause radiation couid
be either on tHe line or somewhere nearby—remember that the fields from an
unshielded balanced line extend indefinitely. Since, in general, it is not possible
to control the “neighborhood” through which a line must pass, a shielded line
is usually preferable to avoid spurious radiation. On the other hand, since no
dielectric is totally loss-free, when the “neighborhood” of a line can be con-
trolled and line loss is intolerable, an open air, two-wire, balanced line is usually
the optimum choice. As an example of this situation, consider the feed line to a
transmitter on the top of a mountain, with the feed wires strung above the tree
tops between toweis eie.ted specifically for this purpose.

1.4 LOW PASS FILTERS AND
SIMULATED TRANSMISSION LINES

The cascade of series inductors and shunt capacitors treated in Section 1.3 can
be redrawn as a cascade of identical T sections (Figure 4). For simplicity’s sake,
only the unbalanced line is shown. Again, the arguments pertain to both bal-
anced and unbalanced lines. Each of the T sections (in Figure 4) can be recog-
nized as a low pass filter section—that is, a two-port network that attenuates
signals acccrding to some monotonically increasing function of frequency. At
first glance, it would seem natural to assume that a transmission line should
have some sort of low pass filter characteristic.

This question can be investigated by finding the image impedance of one of
the T sections. Image impedance is defined as that impedance which will appear
at the input of a symmetric two-port network when the same impedance is used
as the load to that network. Considering one of the T sections of Figure 4, the

LAz/2 LAz/2 LA3/2 LA2/2

Figure 4 Cascade network of identical low pass T sections



