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PREFACE

The use of finite element methods for the analysis of structures and
continua has become commonplace in many engineering fields—aeronautical,
civil, automobile, mechanical, shipbuilding, etc. The early books on finite
element methods more or less covered the whole field of achievement.
Howeéver, it is noticeable that the more recent books have concentrated
solely on one method, namely the Displacement Method. Research and
development has made very rapid progress during the past decade and has
branched out into the areas of statics, dynamics, stability, non-linear stress—
strain, large displacements, optimization, etc. A person directly involved in
finite element method research now finds it impossible to keep up with the
whole field and quickly finds himself a specialist in a specialized area. It has
now become impossible to write one book which adequately covers one of
the areas, let alone the whole field. The present book concentrates on the
area of elastostatics.

In Chapter 1 a review of finite element methods is presented. This covers
Basic Relationships, Basic Force Method, Basic Displacement Method,
Analogous Displacement Method, Direct Stiffness Method, Combined
Methods I, II and III (the third being the method of Lagrange multipliers),
Rank Technique for automatically selecting redundancies, Rank Force
Methods 1 and II, Optimization of Redundancy Selection, Rank Forte
Method 111, Eigen Force Method, Eigen Displacement Method (these last
two methods solve static problems using an eigenvalue formulation), Stress
Function Method, Unified Force-Deformation Method, Matrix Deforma-
tion Method and Static Force Method. All the methods are presented in a
standardized manner so that the interrelationships between tke various
procedures can be readily appreciated. In fact, this standardized approach
to all methods was predominant in the developments given in Chapter 2.

The second chapter develops the coricept of characteristic matrices for any
finite element for elastostatic analysis. This approach permits complete
interchangeability of different types of elements between independently
developed analysis programs irrespective of the analysis method or-basic
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element assumption. The analogy between element derivation procedures
and the equality of principal matrices is developed. A widespread adoption
of this concept would have far-reaching implications, facilitating communica-
tions and the exchange of new developments. and it would speed up practical
application in the field of finite elements.

The characteristic matrices of an element are: (I} the elastic matrix
(natural, non-singular, stiffuess or flexibility), (2) the initial deformation or
force vector due to initial strains, (3) the assembly matrix and (4) the output
matrix. These matrices have been derived using both strain and stress assump-
tions for various types of elements in Chapters 3 and 4. The strain-assumed
elements are given in Chapter 3 and the stress-assumed elements in Chapter 4.

The first and second characteristic matrices form the natural or consistent
force-deformation relationship for the element. The conventional force-
deformation relationship of displacement (strain) elements is inconsistent,
that is, the element stiffness matrix is singular. In the more recent stress
function elements the force-deformation relationship is also inconsistent,
that is, the element flexibility matrix is singular. In Chapter 5 these incon-
sistent relationships are developed for both displacement and stress function
elements. The inconsistency is due to the presence of rigid body modes; a
method of automatically extracting these is given that also leads to an
automatic procedure for formulating the element characteristic matrices from
inconsistent relations. The theory is demonstrated for both displacement and
stress function elements. '

In Chapter 6 the family of isoparametric strain (displacement) elements is
presented. In these elements the displacement interpolation functions are
assumed to be the same as the shape interpoiation functions. This procedure
enables elements to be developed with curved boundaries while still ensuring
displacement continuity between adjacent element boundaries. This family
of elements contains axials, membranes and solids but no plate-bending
elements. :

In Chapter 7 the family of isoparametric stress elements is presented.
In these elements the stress interpolation functions are assumed to be the
same as the shape interpolation functions. This procedure enables elements
to be developed with curved boundaries whilst, in this case, ensuring con-
tinuity of forces between adjacent element boundaries. This family of
elements contains axials, plates and solids but ne membrane elements.
The theory of Chapter 7 is new and leads to a more general definition of an
isoparametric element; an isoparametric element is one whose elastic (stress
or strain) interpolation functions are assumed to be the same as the shape
interpolation functions. Such an element exists if the elastic (stress or strain)
and shape coordinates are equal in number. '

Chapter 8 redevelops, with some extensions andin the form of character-
istic matrices, two combinations of axial and shear panel elements. The first



Preface ix

is the well-established constant load axial, with constant area, and the four-
node warped quadrilateral constant shear panel. The second is the linear
load axial, with linear area, and the eight-node warped quadrilateral constant
shear panel. The latter combination of two elements gives force continuity
directly. They are very simple elements and are used extensively in aircraft
design. They are ideal for initial analyses and structural optimization because
of their simplicity.

In Chapter 9 the characteristic matrices of a curved beam element with
constant curvature, uniform section properties, no distributed loading and
six degrees of freedom at each end, are developed. The element is considered
in three dimensions and can be used in any finite element program. Many
structures, such as general frames and piping assemblies, contain curved
beams. However, in an analysis, these are usually replaced by a series of
straight beams. The curved beam element has existed for many years and is a
useful addition to any finite element library. Unfortunately, very few
analysis programs offer it at present.

The finite element analysis of a structure is carried out in three distinct
stages, namely input preparation, solution, and output interpretation. The
first stage requires that the actual structure be replaced by a simpler model.
The simplified model is achieved by a ‘lumping’ procedure. In aircraft design,
for example, a number of stringers plus an effective amount of skin are
lumped together to form an equivalent axial element. The model is then
analysed to give the stress distributions in the ‘equivalent’ structure. To
obtain results for the actual structure (third stage), a ‘delumping’ procedure
has to be carried out. The lumping and delumping stages of analysis are very
time consuming, prone to error and costly. To minimize the lumping and
delumping stages a new family of elements has been developed. These are
referred to as ‘Semi-Monocoque Elements’. In Chapter 10 a four-node
warped semi-monocoque quadrilateral membrane element is developed and
evaluated. The element is based on stress assumptions but can be employed
in any of the finite element methods.

It should be noted that the shear panels of Chapter 8 and the membrane
element of Chapter 10 are quadrilateral and warped and therefore very
practical.

When applying finite element techniques to analyse structural problems
which contain regions of high stress gradients it is necessary to increase the
detail of the finite element model to obtain accurate results. In the case of
structures containing a crack the stress gradients approach infinity in the
immediate vicinity of the crack tip and conventional finite element modelling
techniques are either inadequate or inefficient. The object is therefore to
develop an element which contains steep stress gradients internally and
actually contains the crack tip. Such an element would be very practical for
investigating the effects of cracks in general structural configurations. To
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meet this need a family of cracked finite elements have been developed.
These are given in Chapter 11. The characteristic-matrices of a seven-node
crack element, an eleven-node crack element and a symmetric crack element
are given together with examples to check their subroutines and their
incorporation into the main program.

The elements contained in Chapters 8 to 11 are very practical. Their
characteristic matrices are given, which means that these elements can be
readily incorporated into any analysis system by simply using the inter-
changeability relationships. When adding a new element to a system two
main steps are involved; firstly an element subroutine has to be written and,
secondly, it has to be placed in the overall program system. Obviously these
steps have to be checked. Examples are therefore given for all the elements
to check both the element subroutines and their correct incorporation into
the system. '

In the analysis of a large complex structure it is necessary, for several
economic, computer capacity or organizational reasons, to divide it into a
number of smaller substructures. As an example, the fuselage and wings of
an aeroplane may be designed at different locations which are thousands of
miles apart ; indeed, they may be designed in different countries. Substructur-
ing is essential in these cases. Each substructure is considered as though it
were a separate problem. The various substructures are finally coupled
together in such a way that equilibrium and continuity are satisfied at
common boundaries. The substructure coupling procedure for the displace-
ment method is given in Chapter 12. :

Many lecturers and researchers have the misconception that there is
nothing left to do in the area of elastostatics. It can only be assumed that such
people have no practical experience in the application of finite element
methods in a production environment where the analysis covers a period of
about two years and each design iteration takes about two or three months.
The biggest headache in static applications is the preparation of input and the
interpretation of output. Considerable research is still required to minimize
these two design phases. -

This book contains a considerable amount of new material not to be found
in any other book. It is hoped that its content will encourage new, interesting
and practical research and development activities, particularly in the areas
of force continuity, isoparametric stress elements and the family of sémi-
monocoque elements. The concept of element characteristic matrices and the
interchangeability proposal should also be considered very seriously for new
and future developments of computerized analysis systems. Also, from the
point of view of standardization, it is felt that research should continue in the
eigenvalue formulation of static problems. This may prove to be important
in the future since it places statics, dynamics and stability on the same
footing.
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