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Preiacé

If one takes the nature of the fundamental unit of design or atomic building block
as a measure of ‘‘generations” of digital engineering, the field can be said to be in
its fourth generation. In the first generation, the building blocks were discrete
components, such as vacuum tubes and, later, transistors. The second generation
can be categorized as the use of integrated-circuit gates as the basic units of design.
In the third generation, the engineer dealt with more powerful building blocks,
such as registers, multiplexers, and arithmetic and logic units. In the fourth
generation, the units of design grew into such sophisticated single components as
microprocessors, CRT controllers, and analog-to-digital converters. A more recent
component in the fourth generation is bit-slice logic, a powerful and flexible
digital building block. This is the subject of this book.

The motivation for writing this book was that, in comparison to the large
amount of literature on other fourth-generation building blocks such as micro-
processors, there is relatively little literature (except for semiconductor manufac-
turers’ specifications) on bit-slice logic. A further motivation was that, beginning
in 1978, a variety of manufacturers announced that new large-scale computers
were being produced using bit-slice logic. ) .

The main thrust of the book is as a tutorial and reference for the system
architect and digital design engineer. The book also has application in electrical-
engineering and computer-science curricula as a supplemental text in such courses
as computer organization, digital system design, digital .logic design, micro-
processors, and microprogramming. )

Chapter 1 introduces the concept of bit-slice logic. It also introduces the 2901,
the most widely used bit-slice component. Since bit-slice logic is usually used with
the control concept of microprogramming, this concept is introduced in Chapter 2.
Chapters 3 and 4 describe many of the bit-slice compenents available from semi-
conductor manufacturers. In addition to covering these components in detail,
Chapters 3 and 4 put the slices into perspective and discuss problems in the
designs of some of the slices.

Chapter 5 discusses more advanced microprogramming topics, such as pipelin-
ing, encoding, and optimization. Chapter 6 illustrates some auxiliary LSI logic
components, some of which are designed as bit slices. Complementing the devices

vii




viii Preface

discussed in Chapter 7 are general devices that can be customized or ‘“‘pro-
grammed?’ as specialized logic components; these devices, such as programmable
logic arrays and gate arrays, are discussed in Chapter 7.

Given that the microprogramming concept is closely allied with the use of bit-
slice logic, the last two chapters discuss tools, facilities, and principles for the
development of microprograms.

I gratefully acknowledge the help of two colleagues—Dan O’Donnell of the
IBM Systems Research Institute and Poughkeepsie Laboratory, and Dave Hocker
of the IBM Poughkeepsie Laboratory—in reviewing the manuscript of this book
and providing many helpful suggestions. I also acknowledge the cooperation of the
following companies for providing material and permission to use selected parts
of it:

Advanced Micro Devices

Fairchild Camera and Instrument Corp.
Intel

Monolithic Memories

Motorola

Texas Instruments

The views and opinions herein are solely those of the author, who also takes
responsibility for any errors.

GLENFORD J. MYERS

New York, New York
January 1980




Contents

1. An Introduction to Bit-Slice Logic, 1

The Evolution of Bit-Slice Devices, 2
The Nature of a Slice, 3

The 2901 ALU/Register Slice, 7

Bit Slices versus Microprocessors, 13
Semiconductor Technology, 14

2. An Introduction to Microprogrammed Control, 18

A Hypothetical Microprogrammed Machine, 22
Observations, 40

- Advantages of Microprogrammed Control, 41
Information Sources, 46
References, 47

3. ALU/Register Slices, 48

The 2901 Slice, 48

The 3002 Slice, 65

The MC10800 Slice, 79
The SBP0401A Slice, 86
The 2903 Slice, 97

The 745481/741.5481 Slice, 114
The 6701 Slice, 122
The 9405 Slice, 125
The 4705 Slice, 128
The F100220 Slice, 130
Comparisons, 131 ‘
References, 139




X

4.

Contents

Microprogram Sequencing Devices, 140

The 2909 Sequencer Slice. 142

The 2911 Sequencer Slice, 149

The 29811 Next-Address Control Unit, 151
The 29803 16-Way Branch Control Unit, 159
The 2910 Sequencer, 161

The 3001 Sequencer, 174

The MC10801 Sequencer Slice, 182

The 745482 Sequencer Slice, 190

The 8X02 Sequencer, 194

The 67110 Sequencer, 198

The 9408/4708 Sequencer, 202
Comparisons, 205

References, 210

Microinstruction Design, 211

Microinstruction Pipelining, 212

Other Forms of Pipelining, 217

Pipeline Prediction, 221

Variable Cycle Times, 222

Residual Control, 223

Microorder Encoding, 225

Pre- and Post-Pipeline Decoding, 227
Addressing Large Control Storages, 230
Horizontal versus Vertical Microinstructions, 234
Two-Level Control Storages, 239

Using Main Storage as the Control Storage, 241
A Case-Study Design, 242

References, 246

Other Bit-Slice and Support Devices, 247

Bit-Slice Families, 247

The 2930 Program Control Unit, 249

The 9407 Program Control Unit, 253

The MC10803 Memory Interface, 255

The 2914 Priority Interrupt Controller, 260
The 3214 Interrupt Control Unit, 267

The 2904 Status and Shift Control Unit, 268




Conltents

The 2925 Clock Generator and Driver, 278
References, 280

Programmable Logic, 281

Structure of a PLA, 281

Use of the PLA, 284
Programmable Array Logic, 286
The 748330 FPLA, 288

The 825100 FPLA, 289

Other Programmable Logic, 289
Expanding the PLA, 293
Applications of the PLA, 293
References, 299

Microprogram Support Tools, 300

Microassemblers, 300

Definition-Driven Microassemblers, 303
Specialized Microassemblers, 311

High-Level Microprogramming Languages, 313
Development and Instrumentation Systems, 314
Software Simulators, 320

References, 321

Firmware Engineering, 323

The Development Cycle, 324

Microprogram Design, 325

Microprogram Testing, 327 -
Microprogram Walkthroughs and Inspections, 329
Microprogram Correctness Proofs, 330
References, 331

Index, 333

e e st e S



1

An Introduction to
Bit-Slice Logic

Bit-slice logic is the most recent generation of fundamental building blocks availa-
ble to the digital design engineer. Not only do such devices give the engineer a set’
of powerful, fast, and flexible building blocks, but also they attempt to solve the
major problem of LSI technology, namely, the potential proliferation of unique
part types.

When one looks at the histqry of the engineer’s basic building blocks, one can
.identify roughly four generations of components, although the process has really
been one of evolution, rather than a clearly separated sequence of distinct steps.
Not only did each generation introduce significant improvements in component
speed, cost, and reliability, but they also significantly improved the productivity of .
the system design and manufacturing processes. In reviewing the latter, it is help-
ful to see the effects of the gcncranons on the traditional types of design that must
be performed, namely:

Circuit design —the interconnection of components such as transistors, resistors,
and capacitors, to form logic devices such as ANDs and ORs.

Logic design —the interconnection of logic devices to form combinatorial and

' sequential devices such as registers, counters, and adders.

System design —the interconnection of such devices as adders, registers, and
memory arrays to form-digital systems such as processors and
I1/0 device controllers.

Physical design—the physical layowt of the components, for instance, on printed-
circuit or wire-wrap boards.

The building blocks of the first technology generation, beginning in the 1940s
and lasting into the early 1960s, were discrete components such as transistors
(earlier, vacuum tubes), diodes, resistors, and capacitors. Here the engineer. was
faced with the full tasks of circuit, logic, system, and physical design.
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The second generation, occurring in the early- and mid-1960s, saw the building
blocks grow into integrated circuits, each of which contained perhaps 10 to 50 ele-
mentary components and performed such logic functions as AND and NOR. The
jobs of logic and system design remained the same (actually, they grew because of
the increased sophistication of systems), but the task of circuit design was greatly
reduced (except, of course, for the few people designing the integrated circuits
themselves), and the task of physical design was reduced somewhat, since the
integrated circuit reduced the total part count of a system.

The building blocks of the third generation, occurring in the late 1960s and
early 1970s, were integrated circuits representing logic devices (MSI) containing
perhaps 50 to 200 elementary components and forming such devices as registers,
counters, multiplexers, and arithmetic-and-logic units. This generation continued
the reduction of the task of physical design (again because of a reduction in the
number of physical parts needed to build a system) and lessened the task of logic
design.

The fourth generation, which began in the early 1970s, brought about an
immense leap in the size and scope of the building blocks. One notable change
occurred in storage devices; single chips containing 4096 bits of storage, and later,
16,384 and 65,536 bits, became widely available. Another notable change was the
microprocessor; on one chip, embodied in 20,000 or more elementary components,
is a full-Nedged central processing-unit and perhaps a small amount of memory.

Given that a microprocessor and its support chips (e.g., disk controllers, key-
board controllers, communication interfaces, memory-refresh logic, bus con-
trollers) can be used, the tasks of digital system design and physical layout are
substantially reduced. However, the microprocessor, is not a viable solution to all
design problems (i.e., the problem of designing a high-speed, single-processor
computer); microprocessors are relatively slow and have static and primitive
instruction sets. This precipitated a requirement for a more flexible set of fourth-
generation building blocks. The bit-slice device is an answer to this requirement.

THE EVOLUTION OF BIT-SLICE DEVICES

Fourth-generation building blocks are LSI devices. The motivations of LSI are
lower costs (large amounts of circuitry are mass produced on a single silicon chip.
reducing the costs of the primitive components and eliminating most of the
human-assembly costs of prior generations), higher speeds (by reducing transistor
sizes, path lengths between components, and circuit capacitance), higher reliability
(by reducing thé number of mechanical interconnections among components), and
shorter design times. However, the designer of LSI devices now faces two new
problems: the *pin-out” problem and the “part-proliferation” problem.

The pin-out, or pin-count, problem is the easiest to understand. A typical LSI
silicon chip may have a size of 0.15 x 0.2 inches. Obviously only 2 limited number
of external connections can be made between this chip and the outside world. Cur-
rently the feasible upper limit is in the neighborhood of 100 connections (pins on
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the package holding the chip), and it is unlikely that significant increases in this
limit will be made. This restricts the type of circuitry that can be placed or: a chip.
For instance, it is not feasible to construct a 32-bit ALU chip (in spite of the fact
that the amount of circuitry is well within the state of the art), since such a device
would require over 100 pins (32 outputs, 64 inputs, several control inputs, and
several status outputs). Hence the pin-count limitation is one of the great barriers
to the use of LSI.

The second problem is the potential proliferation of unique LSI devices. In pro-
ducing an LSI device, the design costs are extremely high, but the production cost
per unit is extremely low. Hence the economics of LSI are attractive only when a
large number (e.g., tens of thousands or more) of units of each type can be used.

Here one is faced with a dilemma. The large number of circuits on an LS1
device could easily imply that such devices (with the exception of memory arrays
and microprocessors) are specialized toward a particular system and unusable in
other designs. For instance, suppose that a computer company were developing a
family of processors, each with distinct cost and performance objectives. If one
could design several LSI chips for use in processor A, it is unlikely that they could
be used in processor B, because the processors are likely to have dissimilar
internal designs (e.g., different data-path widths, different ALU luhctions, dif-
ferent degrees of internal parallelism). That is, the mere nature of an LSI chip
(containing thousands of gates) means that it is likely to absorb much of the nature
of the system in which it is a part, rendering it unusable in other designs, and
hence restricting the volume in which it can be manufactured. Thus one is faced
with another dilemma that could prevent the designer from taking advantage of
LSI. Note that the pin-count restriction compounds the part-proliferation pro-
blem, since it might require one to develop a larger number of LSI chip types,
increasing the proliferation of specialized chips.

The road to a solution is the realization that, in LSI-based design, one should
not be preoccupied with minimizing the number of elementary components or
gates in a system but with minimizing the number of chip types. What is needed is
a small set of universal chip types. Rather than containing static functions, the
functions of these devices should be capable of being controlled externally (i.e.. by
logic external to the device). To serve as building blocks in a large number of
systems, these devices should be capable of performing a large number of func-
tions, many of which might not be used in a particular design. At the same time,
these universal devices should place few, if any, restrictions on the designs in
which they might be used (e.g., restrictions on data-path sizes). Last, such devices
must conform to the pin-count limitations. The bit- lice device is an answer to
these requirements.

THE NATURE OF A SLICE

The question then is determining how to partition a system into a set of LSI
building blocks such that they can be used in a variety of other designs. Consider-
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ing central processing units for the moment, the answer is the realization that the
heart of most processors, independent of their instruction-set architecture, " is
similar to that illustrated in Figure 1.1. That is, the heart of a processor normally
consists of an array of registers, a multifunction ALU, and shift logic: One
thought might be to incorporate all this on a chip, but this is not a solution for
several reasons. First, one is likely to encounter the pin-count problem. Second,
the chip will. not be universal, because it will contain too many dependencies (such
as data-path width) on the original design. For instance, if Figure 1.1 is the heart
of a 16-bit processor, such a chip would prove to be of no use in 32-bit. 36-bit,
and 8:bit designs.

The solution is to view Figure 1.1 as the three-dimensional equivalent in Figure -
1.2, and then make vertical slicés through the design. That is, one creates devices
having the app€arancé of Figure 1.3. Figure 1.3 illustrates a device that might be
termed a 4-bit ALU/register slice. By designing such a chip and bringing out
appropriate ‘signals (e.g., ALU carry-in and carry-out, both sides of the shift
register), one can devise a universal building block by allowing a set of these
devices to be interconnected to yield an ALU/register section of arbitrary width

N

Figure 1.1. Typical processing-section organization.
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Figure 1.2. Three-dimensional view of a typical processing section.
(e.g., 8, 12, 16, . . . bits). Such a device solves the problems mentioned earlier by

having the following attributes:

1. The pin-count problem is not present because of the “narrowness” of the
device. A device of the form in Figure 1.3 might have 24 to 40 pins.

5



6
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Carry-in

Shifter
connection

Shifter connection

Figure 1.3. A vertical slice through the processing section.

It is an LSI device because, although it is a narrow slice through a set of
registers, an ALU, shifters, and so on, it contains a large number of circuits.

It serves as a universal building block, because the device is designed to
perform a large number of functions, some of which are likely not to be used
in a particular application (the cost of the unused functions is virtually zero,
assuming the device is manufactured in large quantities), and the devices can
be cascaded together to form a processing section of any width.
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Note that only one type of slice—the ALU/register slice—has been introduced
at this point. Other types of slices have been devised. These will be introduced in
later chapters.

THE 2901 ALU/REGISTER SLICE

The best way to gain an understanding of bit-slice logic is to examine an actual
device, and the best device to start with is the 2901 ALU/register slice. The 2901,
first produced by Advanced Micro Devices and now second-sourced by many other
firms, is the most widely used bit-slice device. The 2901 is to bit-slice logic what
the 8080 has been to microprocessors. The 2901 is used as the heart of such CPU
products as DEC’s DECsystem-2020, Data General’s Nova 4, National Semicon-
ductor’s System/400, Functional Automation’s F6400, and the Ampex Model 12.

The 2901 is a 40-pin LSI chip; most versions of the 2901 employ low-power
Schottky TTL technology. The chip contains about 500 gates. Only an introduc-
tion to the 2901 is presented here; it is discussed in more detail in Chapter 3.

Figure 1.4 illustrates the organization of the 2901. Its data paths are 4-bits
wide. The basic sections are a 16-word by 4-bit, 2-port RAM, a working register
(Q), an ALU, and shifting, decoding, and multiplexing logic.

Any of the 16 registers can be read onto the A bus. Likewise, any of the 16
registers can be read onto the B bus. Each of these busses contains a latch, used to
prevent race conditions when the output of the ALU is being written back into the
register array.

Both inputs of the ALU are fed from multiplexers. The R input of the ALU
can be selected to be the register value on the A bus or a value on the D bus, an
external input bus. The S input of the ALU can be selected from the A bus, the B
bus, or the Q register. Both multiplexers have an inhibit capability, meaning that
the value zero can also be fed into the R and/or S ALU inputs.

The Q register is a working register available for general use, although the
motivation for its existence is for use in implementing multiplication and division
algorithms. Looking at the connections to the Q register, one can feed it from the
ALU output bus or from itself. If Q is fed from itself, the shificr allows one to feed
Q with its current value shifted right one bit, shifted left one bit, or not shifted (no
change).

Figure 1.4 shows that the output of the ALU can be gated to three places—to
the Y bus {an external output bus), to the Q register, or to the register array.
When it is gated to the register array, the data moves into the register that was
designated as the register to be gated to the B bus. Between the ALU and the
register array is a shifter, allowing the ALU output to be shifted right or left ane
bit, or not shifted, before the value is placed in the register array. Note that the
external output bus Y is controlled by a multiplexer, meaning that the data placed
on the Y bus can be the ALU output or the A bus. Y is a three-state output,
meaning that if nothing is to be moved onto the Y bus during the current opera-
tion, it can be held in the high-impedence state.
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Figure 1.4, Organization of the 2901.

The 2901’s external connections are shown in Figure 1.5. The inputs are the 4-
bit D bus and 20 control lines. The outputs are the 4-bit Y bus and six status or
condition signals. The four lines at the bottom are sometimes inputs, sometimes
outputs, and sometimes neither (i.c., in a high-impedence state), depending on the
. functions specified by the I controls. For instance, if the I signals specify that the

Q shifter should shift left by one bit, Qg is an input (allowing the low-order bit to
be generated externally) and Q; is an output (allowing the displaced bit to be
tested or fed into another 2901).

As a convention here, bits in registers or busses are numbered such that the
least significant bit is numbered 0. Also, the overscore (.g., X) is used to indicate
either (a) the qné’s complement of a value, (b) that an input control is active when
in the low state, or (c) that an output condition is present when in the low state.
The meaning that pertains in a particular situation should be obvious from the
context.

Most of the control inputs should be obvious by inspecting Flgurc 1.5, with the
exception of the I controls. The 1 lines are subdivided into three groups of theee
lines each. One group controls the multiplexers feeding the AL%J The soeond
group controls the function of the ALU, and the third controls the two shifters, the
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Q-register multiplexer, the Y-bus multiplexer, and the gating of the F bus into the
register array.

Group one specifies the inputs to the ALU. The items that can be fed into the R
side of the ALU are the A register (i.e., the word in the array selected by the A
inputs), the D bus, and zero. The items that can be fed into the S side of the ALU
are the A, B, and Q registers, and zero. However, only eight combinations are
permitted (the combinations A-A, 0-0,"A-0, and D-B are not provided).

‘Group two (three of the 1 lines) specifies the function to be performed by the
ALU. The ALU can perform three arithmetic and five logic functions, but since
the C, (carry-in) input is used during the arithmetic fupctions.” the ALU can
perform six different arithmetic functions if Cy is used as a control input. The
functions are :

Add (F=R + )
Add plus one (F=R+S+1)
Subtract minus cne (F=R-§-1)
Subtract . (F=R-9)
Subtract minus one (F=S-R-1)
- Subtract (F=8S-R)
And ) (F=RAS)
Mask (F=RAYS)
Or (F=RVYS)
Exclusive or (F=R¥™S)
Exclusive nor (F=R™S)
¢ )
A: selects the register to be ==——4 B=——= v bus
displayed on the A-port =1 a—
B: selects the register to be p=——x P, G: signals for carry lookahead
dispiayed on the B-port
and into which data are p———— OVR: overflow
written from the F bus F =0 indicates if F bus bALU
| output} is zefo
D: bus — o} Fy most signtficant ALU output
! u it
i:  selects the function of n t . U .
the ALU and controls p p Cava: ALU carry-ou
the multiplexers ‘(‘ u
1
OF: enablesdataontothe ____|*° s
Y bus
\
C,: ALU carry-in ey
CP: clock — - .
two-way
G Shitt lines for Q shifter
Qs and F-bus shfter i
RAM, .
RAM, J

Figure 1.5. 2901 external cohnections.




