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Preface

This book surveys all aspects of the Josephson effect— from the underly-
ing physical theory to actual and proposed engineering applications. Both ends
of this spectrum are interesting. The physical theory is novel and important for
many macroscopic quantum effects, which have a rich and yet untapped
potential for technical development. We attempt here to present more than a
survey and less than an exhaustive exposition of this wide field. Rather than to
cover everything, we have tried to uncover those aspects of theory, fabrication
technology, and device application that will be of lasting value.

Chapter 1 briefly surveys Josephson junction phenomenology. Although
the reader is assumed to have a basic knowledge of superconductivity, we
begin with the simplest possible description of Josephson structures and their
dynamic behavior. Chapter 2 presents microscopic theory in simple terms. We
discuss salient features of the underlying theory that are most useful in
appreciating experimental results. To some extent the chapters are self-
contained; for example, the reader could skip the microscopic theory (at least
on a first reading) without" seriously impairing continuity. In Chapter 3 we
discuss the dependence of critical current on temperature and on junction
parameters. The static (i.e., zero voltage) behavior of “small” and “large”
junctions is considered in Chapters 4 and 5. Chapter ¢ presents several
important resulis on the current voltage behavior of small weak links, and a
variety of weak link structures is described in Chapter 7

What we discuss in Chapter 8 are those basic technological considerations
and certain advanced techniques that have been found useful in several
laboratories throughout the world over the past decade. We expect such
techniques to continue to be of value, especially for those who are begmmng to
experiment with Josephson junctions.

Chapters 9 and 10 discuss self-resonant modes in small junctions and the
dynamical behavior of extended junctions from the perspective of modern

“soliton” theory.

The last three chapters are directed toward applications of Josephson
junctions. Chapter 11 discusses the various features of junction interactions
with periodic signals and considers such applications as mixing, parametric
amplification, and the voltage standard. Chapters 12 and 13 deal with quan-
tum interference loops and their application to measurement of very small
magnetic fields. Finally, in Chapter 14, we describe the potential of the
Josephson junction as the basic logic and memory element in a very large
digital computer s N TR I
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Throughout the book our choice of theoretical material has been guided
by our later discussions of device applications. In this way we have tried to
achieve a large scale coherence in a range of subject matter that at first glance
might appear to be rather diffuse. We hope that the book will be useful in
graduate courses in the theory and applications of superconductive devices, as
well as for research scientists and engineers. Although extensive, the bibliogra-
phy is not exhaustive, and we apologize to those whose work may have been
overlooked.

ANTONIO BARONE
GIANFRANCO PATERNO
Naples, Italy- '
Romie, Italy -
December 198! . -
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CHAPTER 1

Weak Superconductivity —
Phenomenological Aspects

In this chapter we briefly review the phenomenology of the Josephson effect,
outlining the basic experimental results and providing a qualitative interpreta-
tion on the basis of very simple models. However, first let us say a few words
about its history.

The discovery of what is usually referred to as the Josephson effect dates
back about 20 years (1961-1962). At that time Brian Josephson was a research
student at the Royal Society Mond Laboratory in Cambridge under the
supervision of Brian Pippard. There is no doubt, as reported by Josephson in
his Nobel lecture, that the stimulating oven of the Mond Laboratory, the
presence at that time of Phil Anderson, the de\}elopment of new researches,
both on experiments (Giaever, 1960a,b; Nicol, Shapiro, and Smith 1960) and
on theory (Cohen, Falicov, and Phillips 1962) of superconductive tunneling,
provided an ideal ground for Josephson’s intuition and outstanding conclu-
sions. Josephson’s prediction and the following experimental confirmation
(Anderson and Rowell 1963) opened not only a new important chapter of
physics but also new horizons for a wide variety of stimulating applications.

We shall not dwell further on the history of the discovery of the Josephson
effect, though it certainly deserves adequate space and a deep analysis. Instead,
we prefer to refer the reader to the historical surveys given by Josephson
himself (1974) and other protagonists (Anderson 1970; Pippard 1976), thus
avoiding any possible deformatlon of the fascinating atmosphere in which
those events took place.

1.1 Macroscopic Quantum System

The interpretation of superconductivity as a quantum phenomenon on a
macroscopic scale was introduced by F. London (1935). The theory of
Ginzburg and Landau (1950) provided an enormous melght into the nature of
superconductivity. They developed a modification of “the London theory (F.
London and H. London 1935a,b) by introducing a position dependent param-
eter, Y, which gives a measure of the order in the superconducting phase.
Unlike the earlier two fluid models proposed by Gorter and Casimir (1934),
such an order parameter is complex and can be regarded as a wave function

1



2 WEAK SUPERCONDUCTIVITY—PHENOMENOLOGICAL ASPECTS CHAP. ]

for superconducting electrons. As shown by Gor’kov (1959), ¢ is proportional
to the local value of the energy gap function A. In this framework a single wave
function is associated with a macroscopic number of electrons which are
assumed to “condense” in the same quantum state. In this sense, the supercon-
ductive state can be regarded as a “macroscopic quantum state.” Therefore we
are dealing with particles, having effective mass and charge m* and e*
respectively, which can be described as a “whole” by a macroscopic wave
function of the form :

y=p'%/® (1.1.1)

where ¢ is the phase common to all the particles and p represents, in this
macroscopic picture, their actual density in the macrostate |s):

slw*yls) =Wl* =p

The electric current density can be written, in the presence of a ve~tor potential
A

= [ By - v u) - S A

where ¢ is the velocity of the light.

As follows from flux quantization, the charge e* is twice the electronic
charge e, since the “particles” we are dealing with are in fact pairs of coupled
electrons. This is contained within the framework of the microscopic theory of
superconductivity first derived by Bardeen Cooper and Schrieffer (1957) and
usually referred as B.C.S. theory. It is assumed that m* =2m (m=electronic
mass), but, it is easy to see that the choice of m is arbitrary, since it depends
essentially on the normalization assumed for the pair wave function .t

Thus with the ¢ given by (1.1.1) the expression for J becomes

J=p= (hV<p-2—A) (1.1.2)

Gauge invariance requires that under the transformations of the vector
potential A and scalar potential U

AsA+vyx UsU- %’t‘

the observable physical quantities remain unchanged. This 1mp11es the phase
transformation

2e

*See also the microscopic derivation of the Ginzburg Landau theory by Gor’kov (1959).



SEC. 1.2 COUPLED SUPERCONDUCTORS 3

as can be readily verified for the current density J by (1.1.2). The choice of
constant values for the scalar quantity x does not affect potentials but just
implies different values of the phase factor. This corresponds to the unobserva-
bility of y.

We can arbitrarily assign a phase value at a given point; however, because
of the occurrence of the so-called long range order the value of the phase is
fixed in all points. Obviously, as is evident from (1.1.2), spatial variations of
the phase ¢ describe carrying current states of the superconductor.

For a system in equilibrium the required gauge invariance leads neces-
sarily to a time dependent . It is clear in fact that, even assuming a constant y
in one gauge, any transformation to another gauge would imply a change of ¢
as in (1.1.3) in which x is time dependent. The time evolution of y in stationary
conditions obeys the usual quantum mechanical equation of the form

St =ky

As can be seen from the microscopic theory (Gor’kov 1959) the quantity E
is equal to twice the electrochemical potential p. This value represents the
minimum energy required to add a Cooper pair to the system. Thus (r, t)=
Y(r)e ~24/? (See also Anderson 1963, 1966).

Since the number of pairs N and the phase ¢ are conjugate variables
(Anderson 1963) there is an uncertainty relation, ANAg~2x, which corre-
sponds to the circumstance that within an isolated superconductor N will be
fixed and, consequently, the phase ¢ undefined.

1.2 Coupled Superconductors

Let us now consider two superconductors §; and S; separated by a macro-
scopic distance. In this situation, the phase of the two superconductors can
change independently. As the two superconductors are moved closer, so that
their separation is reduced to about 30 A, quasiparticles can flow from one
superconductor to the other by means of tunneling (single electron tunneling).
If we reduce further the distance between S, and S, down to say 10 A, then, as
we shall see, also Cooper pairs can flow from one superconductor to the other
(Josephson tunneling). In this situation if we assign a given phase in S, is the
possibility of altering independently the phase in Sy still allowed? The answer
is no! This degree of freedom is removed, since phase correlation is realized
between the two superconductors; that is, the long range order is “transmitted”
across the boundary. Therefore we expect that the whole system of the two
superconductors separated by a thin (~ 10 A) dielectric barrier will behave, to
some extent, as a single superconductor. Unlike ordinary superconductivity,
this phenomenon is often called “weak superconductivity” (Anderson 1963)
because of the much lower values of the critical parameters involved. The
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above-quoted work by Anderson should be considered a milestone in the
development of the field.

Josephson theory (1962a,b, 1964, 1965, 1969, 1974) deals with such
systems of weakly coupled superconductors. We devote our attention mostly to
tunneling structures although Josephson effects take place in various types of
superconducting “weak links” (Dayem bridge, point contacts, etc.; see Section
1.8). To begin, we recall the basic concepts of single electron tunneling within a
simple phenomenological approach. An account of both single electron tunnel-
ing and Josephson phenomenology can be found in Solymar (1972).

1.3 Single Electron Tunneling

The history of superconductive tunneling began with the experiments per-
formed by Giaever (1960a,b) and by Nicol, Shapiro, and Smith (1960). A
tunneling structure consists essentially of two metal films separated by a thin
(~30 A) dielectric barrier as sketched in Fig. 1.1. The behavior of such a
structure can be investigated by studying the dependence of the tunneling
current I on the voltage V across the junction.

To “visualize” the tunneling process, we adopt a simple representation in
terms of the energy (£)-momentum (k) diagrams. The normal metal is
represented in the E-k plane by the curve of Fig. 1.2a. The dashed line
corresponds to the portion of the parabola below the Fermi energy E (hole
states) which has been reflected across the Fermi level. In this picture the
electron hole pair creation is regarded as excitations of two states of energy
E,=|¢| and E, =|e,| respectively. That is, all excited states have positive
energy measured with respect to Ej. In the case of the superconductor, all the
condensed pairs are at the Fermi level and a minimum threshold energy A
(energy gap) is required by an excitation as shown in Fig. 1.2b. In this case
there exists a particle which is “partially” in the hole state and “partially” in
the electron state. These are the quasiparticle excitations which have energy

Figure 1.1 Tunneling junction of cross-type geometry. The dimensions are L and W; 2 and b are
the two superconducting films.



