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PREFACE

“This textbook is intended for use in an introductory graduate level course, and the
general sequence followed is similar to that used in classrooms in various universities.
The book has been developed primarily from class notes that I prepared for teaching
initially at South Dakota State University and later at The University of Texas at El
Paso. :

The first chapter is on Soil Aggregate and is a general review of most of the
materials to which students are introduced in the first course in soil mechanics
offered at the undergraduate level. The remaining six chapters, dealing with per-
meability and seepage, stress distribution in a soil mass due to various types of loading
conditions, development of pore water pressure due to undrained loading conditions,
consolidation, methods of calculation of settlement of soils, and shear strength of
soils, are presented in such a manner that readers who are unfamiliar with the subject
will not face any serious problems in understanding. The basic concepts are presented
in the earlier sections of each chapter and are then followed by more advanced
topics.

The text has been extensively illustrated for better understanding. During the
past ten to fifteen years, several new studies have been published in the geotechnical
journals around the world. I have made an effort to include the important findings of
most of these works as seem pertinent to the materials covered in this text.

A number of example problems are given in each chapter as well as a fairly large
number of representative problems for solution by the students at the end of each
chapter.

An extensive list of references is given at the end of each chapter which can be
used by readers for in-depth review and/or research work.

Dual units—conventional English and S{—have been used throughout.

I am indebted to my wife, Janice, for her help in typing the manuscript. She also
helped in preparing most of the figures and tables. Thanks are also due to Sands H.
Figuers, graduate student at The University of Texas at El Paso, for his help in several
stages during the preparation of the manuscript.

Braja M. Das
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CHAPTER

~ ONE
SOIL AGGREGATE

1.1 INTRODUCTION

Soils are aggregates of mineral particles, and together with air and/or water in the void
spaces they form three-phase systems. A large portion of the earth’s surface is covered
by soils, and they are widely used as construction and foundation materials. Soi
mechanics is the branch of engineering that deals with the engineering properties of
soil and its behavior under stresses and strains.

This chapter is primarily designed to be a review of fundamentals to which the
reader will already have been exposed in some detail. It is divided into eight major
parts: weight-volume relations for the three-phase systems, grain-size distribution of
soil particles, clay minerals, consistency, classification systems, compaction, volume
change of soils, and the effective stress concept.

1.2 WEIGHT-VOLUME RELATIONSHIPS

1.2.1 Basic Definitions

Figure 1.1a shows a soil mass that has a total volume ¥ and a total weight W. To
develop the weight-volume relationships, the three phases of the soil mass, i.e., soil
solids, air, and water, have been separated in Fig. 1.15. Note that

W=W,+ W, 1.n
and, also,
V=V+V+1 12)

1
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Weight Votume Weight Volume
Y

el
A7

X

(a) (b)

Fig. 1.1 Weight-volume relationships for soil aggregate.

=Wtk 13)

where W, = weight of soil solids
W,, = weight of water
¥, = volume of the soil solids
¥,, = volume of water
¥, = volume of air

The weight of air is assumed to be zero. The volume relations commonly used in soil

mechanics are Yoi‘d ratio, porosity, and degree of saturation,
Void ratio e is defined as the ratio of the volume of voids to the volume of solids:

4
e=-" (14)

n=5— (1.5)
vV
Also, V=W+§
and so
¥ WiV e
n=K+UI{,=VSIKﬁ;{,/K=1+e 4

Degree of saturation S, is the ratio of the volume of water to the volume of voids
and is generally expressed as a percentage:

Vo
S, (%)= -7 X 100 , .7

v

The weight relations used are moisture content and unit weight. Moisture content
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w is defined as the ratio of the weight of water to the weight of soil solids, generally
expressed as a percentage:

W,
w (%)= —X 100 1.8)
H
Unit weight v is the ratio of the total weight to the total volume of the soil
aggregate:
w
y=— (19)
14
This is sometimes referred to as moist unit weight since it includes the weight of
water and the soil solids. If the entire void space is filled with water (i.e., V;=0), it
is a saturated soil; Eq. (1.9) will then give use the saturated unit weight yg,.
The dry unit weight v, is defined as the ratio of the weight of soil solids to the
total volume:
W
=— 1.10
W= (1.10)
Useful weight-volume relations can be developed by considering a soif mass in
which the volume of soil solids is unity, as shown in Fig. 1.2. Since ¥, =1, from the
definition of void ratio given in Eq. (1.4) the volume of voids is equal to the void
ratio e. The weight of soil solids can be given by

W= Gy ¥;=Gyy,  (since ¥;=1)

where G is the specific gravity of soil solids, and ¥, is the unit weight of water
(62 .41b/ft3 or 9.81 kN/m?).

From Eq. (1.8), the weight of water is W,, = wW, = wGjy,,. So the moist unit
weight is

+W, Gy, + WGy - Gsyw(l +w) (1.11)
v+, 1+e 1+e '

Air T
T‘ .T_ VV =g
Wiy = wGsvw Water Vi = wGg '

Ws = Gsrw Solid \ Vs=1
L \ \\S _L Fig. 1.2 Weight-volume relation for V= L.
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Wy =eyy |- - Water - -.] Vy=e

W = Ggrwy Solids

The dry unit weight can also be determined from Fig. 1.2 as

Fig. 1.3 Weight~volume relation for saturated
. soil with Vg=1.

The degree of saturation can be given by
5= ;—’,‘f= w”;,i g8 “'G’:”/ L ?,:;@ (1.13)
For saturated soils, S, = 1. So, from Eq. (1.13),
e = wG; (1.14)

By referring to Fig. 1.3, the relation for the unit weight of a saturated soil can be
obtained as o
W_Wt+W, Gy,tey,

=—= 1.15
YT Ty T T o (115

Basic relations for unit weight such as Eqs. (1.11), (1.12), and (1.15) in terms of
porosity n can also be derived by considering a soil mass that has a total volume of
unity as shown in Fig. 1.4, In this case (for ¥V = 1), from Eq. (1.5), ¥,=n. So,
Vi=V—-¥=1-n, ‘

The weight of soil solids is equal to (1 —n)G,y,, and the weight of water
W, = wh; =w(1 —n)G;y,,. Thus the moist unit weight is

W _W+W, (1-nGny,+w(l—n)Gy,
v 1’4 vV 1

=Gy, (1 —n)(1+w) (1.16)
The dry unjt weight is

W,
w= o= 0-mGay, (L.17)



SOIL AGGREGATE 5§

WW=WG57W“ —n)
Wg = Ggrwlt —n) }()I\}s\ Vg=({1—n)

}- \\\\\ l Fig. 1.4 Weight-volume
A relationship with ¥V = 1.

If the soil is saturated (Fig. 1.5),
W+ W,

B w

Tt = =(1 —n)Ggy,, t 0y, = [Gs“—n(G:_‘)]')’w (118)

Several other functional relationships are given in Table 1.1.

Example 1.1 For a soil in natural state, given ¢ = 0.8, w = 24%, and G;= 2.68.

(a) Determinc the moist unit weight, dry unit weight, and degree of saturation.

(b) If the soil is made completely saturated by adding water, what would its
moisture content be at that time? Also find the saturated unit weight.

SOLUTION Part (a): From Eq. (1.11), the moist unit weight is
G, (1+ w)
T 4e
Since ¥,, = 9.81 kN/m?,

_(268)(9.81)(1 +0.24)
T 1 +08

T2 1 T

Ww=n71w |~ ~ water

= 18.11 kN/m?

- - - - - V=1

Ws = smids\ Vs=(1-nl

\ \\ ‘L Fig. 1.5 Weight-volume relationship
.L N for saturated soil with V' = 1.
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From Eq. (1.12), the dry unit weight is
_ Gy (2.68)(9.81)
1+e 1+08
From Eq. (1.13), the degree of saturation is

G, (0.24)(2.68)

S, (%) = WT’ X 100 === X 100 = 80.4%

Y = 14.61 kN/m®

Part (b): From Eq. (1.14), for saturatedvsoils,e = wGj, or

e 038
W(%)=G_X 100:2_6_8_ X 100=2985%

s

From Eq. (1.15), the saturated unit weight is

Gyvw*ter, 9.81(2.68 +0.8)
l1+e  1+08

Yt =

= 18.97kN/m?

1.2.2 General Range of Void Ratio and Dry Unit Weight Encountered in
Granular Soils

For granular soils (sand and gravel), the range of void ratio generally encountered can
be visualized by considering an ideal situation in which particles are spheres of equal
size. The loosest and the densest possible arrangements that we can obtain from these
equal spheres are, respectively, the simple cubic and the pyramidal type of packing as
shown in Fig. 1.6. The void ratio corresponding to the simple cubic type of arrangement
is 0.91; that for the pyramidal type of arrangement is 0.34. In the case of natural
granular soils, particles are neither of equal size nor perfect spheres. The smallsized
particles may occupy void spaces between the larger ones, which will tend to reduce
the void ratio of natural soils as compared to that for equal spheres. On the other
hand, the irregularity in the shape of the particles generally tends to increase the
void ratio of soil as compared to ideal spheres. As a result of these two factors, the
void ratios encountered in real soils are approximately in the same range as those
obtained in the case of equal spheres.

Table 1.2 gives some typical values of void ratios and dry unit weights encountered
in granular soils.

Fig. 1.6 Simplc cubic (2) and pyramidal (b)
types of arrangement of equal spheres.




