COMPILER i
CONSTRUCTION
FOR DIGITAL
COMPUTERS

David Gries

COMPILER
CONSTRUCTION
FOR DIGITAL
COMPUTERS

v
David Gries
Cornell University

John Wiley & Sons, Inc.
New York * London °* Sydney ° Toronto

Copyright © 1871, by John Wiley & Sons, Inc.
All rights reserved. Published simultaneously in Canada.

No part of this book may be reproduced by any means,
nor transmitted, nor translated into a machine
language without the written permission of the
publisher.

Library of Congress Catalogue Card Number: 74-152496
ISBN 0-471-32776-X
Printed in the United States of America.

1098765432

Preface

Compilers and interpreters are a necessary part of any computer
system -- without them, we would all be programming in assembly
language or even machine language! This has made compiler
construction an important, practical area of research in
computer science. The okject of this book is to present in a
coherent fashion the mpajor techniques used in compiler writing,
in order to make it casier for the novice to enter the field and
for the expert to reference the literature.

This book is oriented towards .so-called syntax-directed
methods of compiling. In fact, over one third of the book is
devoted to the subject of formal language theory and automatic
syntax recognition. I feel very strongly that anybody involved
in compiler writing should have a basic knowledge of the
subject. This does nct mean that every compiler should be
written wusing automatic syntax methods. There are many
programming languages where these methods are not suitable. But
a basic knowledge of formal 1language theory will give the
compiler writer more insight into what is happening inside his
compiler, and should help him design and progranm more
systematically and efficiently. ‘

Syntax analysis, however, is only a small part of compiler
construction, and I have included chapters on all the major
topics -- symbol table organization, error recovery, code
generation, code optimization, and so forth. Several topics
(e.g. conversion of constants, incremental compilers) have been
omitted in order to keep the size of the book reasonable.

The book is meant to serve two peeds; it can be used as a
self-study and reference book for the professional programmer
interested in or involved in compiler coanstruction, and as a
text in a one-semester course in compiler writing. In fact, the
book covers all the topics (and more) listed for the course 1I5
{(Compiler Construction) recommended by the ACHM curriculua
committee in the March 1568 issue of the Comsunications 92of the’
ACM.

The reader should have at least one year of. experience
programming in a high-level langnage (eq. FORTRAN, ALGOL,
PL/I), and in an assembly language, and should be able to. read
and understand ALGOL fprograas. In some parts, elementary
Boolean matrix theory is assumed (with a short introduction).

vii

viii Preface

It is assumed the reader knows what a set is, what the union of
two sets is, and so on. Beyond this, the reader shou%d pave the
mathematical experience of, say, a sophomore or junior math
major.

The need for experience with a high-level language is obvious;
the book is about translating programs written in such
languages. Experience with an assembly language is similarly
necessary. Assembly language experience is more important,
however, for the maturity and understanding of how computers
work that it provides. Actually, we will have little to do with
any specific assembly language. The few IBM 360 assembly
language programs scattered throughout the book can be skipped
over withcut loss of understanding.

A compiler is just a program written in some language. Hence,
examples of parts of compilers must ke given in some programming
language, and I have chcsen an ALGOL-like language for its
readability. The examples are usually very short, so that they
can be followed easily. Where too much detail will cause us to
lose sight of the problem at hand, I have taken the liberty to
write English instead of ALGOL. I have checked these progranm
segments gquite carefully by hand, but the reader is warned that
they have not all been dekugged on a computer!

A brief description of the bastard ALGOL used appears in the
appendix. This description is short and relies heavily on a
knowledge of ALGOL. Should the reader not be familiar with
ALGOL and syntax descriptions of languages, it is suggested that
he wait until after studying chapter 2 to read the appendix.

There is more material than can usually be covered in a one-
semester course. The fcllowing minimum set is suggested:

Chapter 1. 1Introduction

Chapter 2. Grammars and languages; omit section 7

Chapter 3. Scanners; cmit sections 4,5,6

Chapter 4. Top-down parsing; especially section 3

Chapter 5. sSimple precedence grammars

Chapter 8. Runtime storage organization; omit sections 6 and 9

Chapter 9. oOrganizing symbol tables

Chapter 10. The data in the symbol table; omit section 2

Chapter 11. Ingernal forms of the source program; omit sections
4,

Chapter 12. Introduction to semantic routines

Chapter 13. Semantic routines for ALGOL~like constructs; omit
section 6

Chapter 14. Allocation of storage to runtime variables; omit
section 3

Chapter 16. Interpreters

Chapter 22. Hints to the compiler writer

Preface ix

You will notice that I emphasize the simple precedence techniqye
for syntax analysis. This is not because it is the best (it is
probably the worst), but it is the easiest to teach. Shou}d
more time be available, the instructor is encouraged to add his
favorite bottom-up syntax method: operator precedence (section
6.1), higher order precedence (section 6.2), transition matrices
(section €.4), production language (chapter 7), or any other not
covered. .

The order of presentation may also be changed. 1In fact, when
teaching a course, it is best to break up the study of syntax
theory with some practical nmaterial. Chapter 8 on runtime
storage administration is independent, while chapters 9, 10, 11,
and 16 on symbol tables, internal source program forms, and
interpreters can be studied in that order at any time.

Chapter 21 deserves special mention. It is a collection of
assorted facts and opinions that a compiler writer should be
familiar with. They don't belong anywhere else, or are two
important to be kuried in scme other chapter. The reader should
browse through this chapter from time to time and read the
sections of current interest.

A compiler-writing course should be a laboratory course.
Students should write and debug a compiler or interpreter for
some simple language, in groups of one to three people. Only
then will they really understand what goes into a compiler. An
interrreter is best, since the students don't have to worry
about messy machine language details; the ideas are important,
not the details. Following this line, the whole project should
be programmed in a high-level language. My experience is that
PL/I or an ALGOL-like 1language is better than FORTRAN.
Compilers in FORTRAN tend to be larger and much more difficult
to read. A translator writing system should be used if
available.

To produce some variakility and creativity, start with a
basic, simple language containing integer variables, assignment
statements, expressions, 1labels and branches, conditional
Statements, and finally simple read and write statements. Then
let each group extend it by adding one or two features.
Examples are arrays, records (structures), different data types,
block structure, procedures, macrcs, and iterative statements.

The compiler can be written and checked out in stages as the
course progresses. First the scanner, then the syntax analyzer,
then the symbcl table rcutines, and finally the semantic

routines. The intergreter itself can be dJdesigned and
implemented as soon as the chapters dealing with it have been
covered. In this way, the work is spread out evenly throughout

the semester, and is not bunched up at the end.

x Preface

Most references to publications are given in a section at the
end of each chapter, although some occur within cther sections.
The appearance of a pname of a person is automatically a
reference to a publication listed in the bibliography. This
bibliography is in alphatetical order by author, and within each
author it is arranged chronologically. If a person has more
than one publication the reference will appear in the fornm
<name> ({year>) , vhere the year refers to the year of
publication. An example is Gries(68). Should an author have
more than one publication in one year, the first listed in that
year is referenced by (<year>a), the second by (<year>b), and so
on. Thus Floyd (64b) refers to Floyd's paper on the syntax of
programming languages.

Except for headings and some figures, these notes were
produced on the IBM 360,65, using a program called FORMAT
written by Gerald M. Berns(69). The author is also indebted to
John Ehrman, who made several important. changes and additions to
the program. The use of FORMAT made it easier to edit the
original material and distribute it to students at various
stages. However, it forced me to deviate somewhat from
conventional notation. The two main changes are the following.
The printer chain which printed the book has no subscripts and
no superscripts (except for © through 9). Exponentiation is
therefore written using the operator !. That is, c!b means c to
the bth power. The 1lack of suktscripts forced me to write a
sequence of n symbols as S(*%}, sS[2}, ..., S[n]. Where its
meaning is obvious, we write this simply as S1, S2, ..., Sn.

Sections of this book originated as lecture notes in compiler
writing courses at Stanford and Cornell, and I have had the
opportunity to use the notes in revised form in short courses at
the Michigan Summer School at Ann Arbor, Cornell, and the 1970
International Seminar in Advanced Programming Systems in Israel.
I am indebted to the students in these courses for their
critical comments on these notes. I have had helpful advice
from a number of people; among them are Richard Conway, Jerry
Peldman, John Reynolds, Bob Rosin, and Alan Shaw. My sincere
appreciation goes to Steve Brown, who read . the manuscript
carefully and thoroughly, fcund many mistakes, and gave valuable
comments and criticisams. Finally, I would like to thank ay
wife, who showed amazing patience and understanding while I was
writing this book.

Table of Contents

IN*TOQUCLION tcvvecccaconccccccaahocacscacccsacncsacasncsocaansl
1.1 Compileis, assemblers, interpreters ...ecceecececcecasa?
1.2 A brief look at the compilation processceeceeasss3
1.3 Some examples of compiler Structure ..ecccceceaceccccs8

rammars and LAaNJUAJES eeeeeecsccscccecsccncnscssarscsccssaneall
1 Discussion Cf grammarsS .ccesceccccscacaccccacsccncael?
2 Symbols and Strings ceecececescccccscosscccscccscascnaacaeld
3 Formal definition of grammar and language ...ceece..18
4 Syntax trees and ambiguity Cesecvevecccnsas 23
5 The parsing proktlem ..cceeecececacsccacococcacncanees?d
6 Some relations concerning a gramMar e.ecececscsccecoee3
7 Constructing the transitive closure of relations ...36
8 Practical restrictions on grafmars ..cececeecsceacceessldd
9 Other syntax notations .c..ccececececcecsccccacsanccaanali3
10 Survey of formal language theory and references46
11

ReVieH--...-.................-....-........-.-ua

NN NDNNNDONN®

h€ SCANNEer t.cceecceccecscacscccnsncsssscacsansnscacsacnsccacaeald
Introduction ec.ecevececcceanacoccsnccnnsanscsnccnssasadl
Regular expressions and finite-state automata52
Programminga Scanner .'....O.D.....QQ.Q.QQ..QQ.I..QG“
A constructor for compiler SCANNEIS coeecesccaccecasl?
The AED RWORD SYSteM cc.ccevacecscccscsosconcscconcncall

Historical refe€renCesS .ceeeevececscscscascnsccoacces ee.e83

Wwwwwwr
e ¢ s 2 ¢ s

AN EWN=O

p

.1 Top-down With EQCKUP cecececcaceccccnccassossccscnecaseBS
2 Top-down prcblems and their solutionccecee...93
.3 Recursive GeSCENt ceececececnscccscnsoscacasssasocccneead?
-4 Historical references ..cececeeccccccscnscsssccasscaaslll

mple Precedence GramMALS .cescecvceosccscncsesscssnsssncsll2
1 Precedence relaticns and their USe .ececesceccacacssa103
2 Definition and construction of the relations106
3 The parsing algorithm B R
4 Precedence fuUNCtiONS ee.ceeveecnccsaccascncscscncsslll
5 Difficulties with constructing precedence grammars 118
6 Historical references ..cecceeecsece ceacmsscsnese ceneas120

her Bottcm-up Recognizersccceeecececcacccan eeceess 121
1 Operator PreCedeNcCe c.eececvaccccccctscssancsacccacasl22
2 Higher order precedenCeeceescceaccccacscasecscss132
3 Bounded CONtEeXt seveeececaccacccascansacnsccsaascansl39
[
5

~

TransSition MALIICES .cceveecevccccncosncsncscscancssesiltlh
Historical references .c.ceeee. cecsacscsas eescsceseas 152

o K2l We N o)

xii

10.

11.

12.

Contents

Production LaNgUAge eececeeccraconcsacacacsccascncccscansences 58
7.1 The 1language .eccceecceescscsccscaccccnccnsssscsessl55
USiNg PL eececcecnsecacscaosccscacoacacsscncacccsasnasanlb2
Calling semantic routines ..cececeecccccccacancaacaelb?
Historical references ...eccecececccccssssasccsscaselb9

NN
SFwN

Runtime Storage 0rganizatiof .c..eesceccecccneccsacaceseasl?l
8.1 ~Data areas and DISPLAYS cccevccccncocaccsccncaccnceel72
8.2 TEMElateS cuvevecececceccanscanencancancecannaeaeaallll
8.3 Storage for elementary data tyYpPeS cecececcccceccessl?5
' Integer, real, logical, pcinter variables
8.4 Storage fOL AILAYS cevcessecccceccsccecocsoccnaneesllb
Vectors, matrices,
multi-dimensicnal arrays, dope vectors
Storage for Strings .eeeececceasccsccscacocacenaass180
Storage for StIUCLULES ciecveecncaccccnccccacanannsl82
Hoare records, PL/1 structures, Standish structures
8.7 Actual-formal rarameter correspondenceceeee...187

Call by reference, VALUE, RESULT, nanme,

dummy arguments,

Array and procedure names as actual parameters
8 Storage administration for FORTRAN ce.eeeececcoceseal192
9 Storage administration for ALGOL ...ceceseecceccess193
10 Dynamic Storage alloCatioOn seeeeeececcececacaacceess206
11 Historical IeferenCesS ...ceeerecececcacocncecccnnnea2ll

@ ®
.
[¢)

ganizing SYymbol TAaklesS seueeeeencacennneensesoncanenaeaa2l2
1 Introduction to table organization ce..eeeeceseece.s213
2 Unsotted and SOIted tableS -...o.v-ooood.onooc.ocow21u
3 Hash addressingll..Q..‘...O......'Q.'..Q..O.'216
rehashing, chaining, hash functions
4 Tree structured symbol talles .cceceececeeconceeeea22l-
5 Block structured Symbol tableS eeeeeeeeceseesecso..225
basic organization, the block list,
opening and closing blocks, entering and searching
9.6 Historical references cescccccaaccas ceseea229

The Data in the Symbol Table “vececcccencccsncscenscanceel3
10.1 The descriptor D T X I
10.2 Descriptors for ccmponents of structures cecccsncesl3b

Internal Forms of the Source Program ceccscsscsccccasveas2lill
11.1 Operators and operands cecctcerscsssecsnrrssssscscaes2Ub
11.2 Polish notation Teeccessccescstecctcscsccncccccsess2l?
11.3 Quadruples D T T 3= 773
11.4 fTriples, trees, and indirect triples ceciiieencans 254
11.5 BlOCKS tiueevsnsnncecocseneesencnesnncennnonnnnn,..258
11.6 Historical references teccccectrsescscccescsccsccnand2DT

Introduction to Semantic Routines D X X ¢
12.1 Transforming infix to Polish notation cecesccsnacaslbl
12.2 Transforming infix to qUAATUPLES ceuneeeenncoscnesalblf
12.3 Implementing semantic routines and stacks D1 X
12.4 Semantic prccessing with top-down parsing ...c......269
12.5 Historical references I .Y 72

13.

14,

15.

16.

17.

18.

19.

20.

21.

Contents xiii

Semantic Routines for AIGOL-like Constructs ceseeneall3
13.1 The semantic routine nNotation ...cceeccocsecconcecealll
13.2 Conditional statementsS ceccecccccocssvceccssccncasnsalll
13.3 Labels and EranChe€S ccaceccccsccsccccscsanccsnccncccceaall9
13.4 Variables and €XpresSsSioONS ceceeccecceccscascscaccnssss282
13.5 FOr-1lO0PS ecccecctccsccsnccaccnctsonacancccccnccccscesl8l
13.6 Cptimizing Boolean e€XPreSSiONS ..esecssscscsscacsse286
Top-down and bcttcm-up methods

Allocation of Storage to Runtimé€ Variables c.ececesscecess295
14.1 Assigning addresses toO variablesS .eececeecceceeeess296
14.2 Allocating storage to temporary variables299
14.3 COMMON and equivalenced variablesS ..ceceeeeececsssa30l

ELTOT RECOVEILY evcecocsasacsconacscccascnccasascaansaseeealdlll
15.7 Introduction ...cceieesscrenecccccececcocnsoonnsnneesll’
15.2 Recovery from SemantiC €IIOLS ..cceecevaccoccscscennall?
15.3 PRecovery from SYNtactiC @ITOLS vceeveveeeenccccnceeeal20

INterPreterS tecevececeeeesonceocacasocconancsacaacanneeeld2?

Ccde generation sieeeecececsosccecencecncccannacacesoneaslldb
17.1 INtroducCtion ecueeveeeeonmeeereccceceacoonanncsonceeee3l?
17.2 Generating code for simple arithmetic expressions .339
17.3 AAAressing OPerandS ceeeeeeesececccocasaccncceesess350
17.4 Extending code generaticn to other quadruple types 359
17.5 Compacting COd€ GENEIAtiON eueeeeeeeeeneooceeecncesa363
17.6 Object MOGU1ES t.eeiieureaeeeanencecoscoanconncesss3b6

COde Optiﬂization ln.o-.o'ooon..oo.-obonovooooo.ooaoooooqoB?S
18.1 Optimization within basic bloCKS eeeeveveccencnoesa3T]T
18.2 Moderate 100p OPtiMizZatiol eeveeeeeeeeeececeevnoeeo383
18.3 More effective optimizaticn .eeeeececoon.. P 1
18.4 Discussion and historical references eccesccensscassldlb

IBplementing MAaCIOS cuveievciereoncsneceoononononnsoonansesll2
19.1 A simple macro scheme “escncscsccmcaccascccassltl3
19.2 Other macro features D T T Y | 3.4
19.3 The general furpose macro generator (GPM)0428
19.4 Historical references T X |

Translator Writing SYStEMS eevvueveeneeecnocncaccancnsesa i35
20.1 INtZodUCtion eeeuieeiveeeccenenosaosnonncncecnenn... 36
20.2 A loock at two compiler COMPilers sevaeececeas ceee..8439

Hints to the Compiler Writer e esr-eessseccvecnccsosncns U7

Appendix: The programming language used in the book ceescesaal59

References S tee e sttt et e et acttresesatsesnsccecnssenesesasld68

Index R T T T Y- % |

Chapter 1.

Introduction

2 Introduction

1.1 COMPILERS, ASSEMBLERS, INTERPRETERS

an equivalent object program. The source program is written in
a source lanquage, the object program is a member of the object
langquage. The execution of the translator itself occurs at
translation time.

If the source language is a high-level language like FORTRAN,
ALGOL, or COBOL, and if +the object language is the assembly
language or machine language of some computer, the translator is
called a compiler. Machine language is sometimes called code;
hence the object program is sometimes called the object code.
The translation of the source program into the object program

occurs at compile-time; the actual execution of the object

An assembler is a program which translates a source progran
written in assembly 1language into the machihe language of a
computer. Assembly language is gquite close to machine language;
indeed, most assembly language statements are just symbolic
representations of machine language statements. Moreover,
assembler statements usually have a fixed format, which makes it
easier to analyze them. There are usually no nested statements,
blocks, and so forth.

An interpreter for a source language accepts a source progranm
written in that 1language as input and executes it. The
difference between a compiler and an interpreter is that the
interpreter does not produce an oktject program to be executed;
it executes the source program itself.

A pure interpreter will analyze a source program statement
each time it is to be executed in order to discover how to
perform the execution. This of course is very inefficient and
is not wused very often. The usual method is to program the
interpreter in two phases. The first analyzes +the complete
source program, much the way a compiler does, and translates it
into an internal form. The second phase then interprets or
executes this internal form of the source program. The internal
form is designed to minimize the time needed to "decode" or
analyze each statement in order to execute it.

As explained earlier, a ccmpiler is itself just a progran
written in some language -- its input is a source program and
its output is an equivalent object program. Historically,
compilers were written in the assembly language of the computer
at hand. In many cases this was the only language available!
The trend is, however, to write compilers in “high-level
languages, because of the reduced amount of programming time and
debugging time, and the readability of the compiler when
finished. We also find many languages designed expressly for
compiler writing. These so-called "compiler-compilers" are a
subset of the "translator writing systems" (TWS); we discuss
these briefly in chapter 20.

A Brief Look at the Compilation Process 3

This book serves to introduce you to compiler constryctign.
The problems of interpreters will alsc. be discussedg this will
add comparatively little to the book since mo;t_tecynlgues used
in compiler construction are also used in writing interpreters.
We will not discuss assemblers, but anyone who understands
compiler construction should have no trouble understanding what
an assembler does and how it performs its job.

You will not find a complete compiler anywhere in this book.
The idea is not to see how I write one particular compiler, but
to learn how to write your own. You will of <course f£find
examples and discussions of many (but of course not all - I do
not even presume to say most) of the techniques and methods used
in compiler construction. Examples will be programmed in a
bastard AIGOL language, a brief description of which appears in
the appendix. If you are using this book as a text in a course,
hopefully you will write your own compiler or interpreter in
ALGOL, FORTRAN, PL/1 or other high-level language; this is the
best way to learn about compiler construction.

1.2 A BRIEF LOOK AT THE COMPILATION PROCESS

A compiler must perform an analysis of the source program and
then a synthesis of the object program. First deccmpose the
source program into its basic parts; then build equivalent
object program parts from them. In order to do this, the
compiler builds several tables during the analysis phase which
are used during both analysis and synthesis. Figure 1.1 shows
the whole process in more detail; dctted arrows represent flow
of information, while solid arrows indicate program flow. 1let
us briefly describe the different parts of a compiler.

Tables of Information

As a program is analyzed, information is obtained from
declarations, procedure headings, for-loops, and so forth, and
saved for later use. This information is detected at a local
level and collected so that we have access to it from all parts
of the compiler. For example, it is necessary to know with each
use of an identifier how that identifier was declared and used
elsewhere. Exactly what must be saved depends of course wupon
the source language, the okject language, and how sophisticated
the compiler 1is. But every compiler uses a symbol table

(sometimes called an identifier list or hame table) in one form
or another. This is a table of the identifiers used in the
source progran, together with their attributes. The attributes
are the type of the identifier, its object program address, and

any other information about it which is needed to generate code.

What other information must be collected? We will most likely
need a table of constants used in the source program. This
table will include the constant itself and the object progranm

4 Introduction

address assigned to it. We may also need a table of for-loops
showing the nesting structure and the loop variables,
information about FORTRAN-like EQUIVALENCE statements, and a
list of the object program sizes of each procedure being
compiled. When designing a compiler, one cannot determine the
form and content of the information to be collected until the
object code for each source program statement and the synthesis
part of the compiler have been thought out in some detail. Much
depends on how much code optimization is going to be fperformed.

ANALYSIS TABLES OF
INFORMATION
source characters e e S
program [~ =1 T~ SCANNER .
|
|, symbols symbol table
Y
SYNTAX
and T "'r ——T>
SEMANTIC |eg— 4 — —f
ANALYZERS
constant table

]
'S
)
!
|

| interna! form

of source for—loop table
:program
!
Y ¥
PREPARATION [L — _|se
for CODE
GENERATION [<q=— o+ —
T other tables
|
Y
CODE ~ - —=-r>
GENERATION [d__ L
SYNTHESIS |
L)
|
1 COMPILER
Y

object program

FIGURE 1.1. Logical Parts of a Compiler.

A Brief Look at the Compilation Process 5

The Scanner

The scanner -- the simplest part of the compiler -- is sometimes
called a lexical apalyzer. It scans the characters of the
source program from left to right and builds the actual symbols
of the program -- integers, identifiers, reserved words, two-
character symbols like ** and //, and so forth. (In the
literature, the terms token and atom are sometimes used for
symbol.) These symbols are then passed on to the actual
analyzer. Comments can ke deleted. The scanner may also put
the identifiers into the symbol table and perform other simple
tasks that can be done without really analyzing the source
program. It can do most of the macro processing for macros
which allow only a textual substitution.

The symbols are usually passed by the scanner to the analyzer
itself in an internal form. Each delimiter (reserved word,
operator or punctuation mark) will Le represented by an integer.
An identifier or constant can ke represented by a pair of
numbers. The first, different from any integer representing a
delimiter, will indicate "identifier" or "constant"; the second
will give the address or index of the identifier or constant in
some table. This allows the rest of the compiler to operate in
an efficient manner with fixed-length symbols rather than
variable length strings of characters.

The Syntax and Semantic Analyzers

These analyzers do the actual hard work of disassembling the
source program into its constituent parts, building the internal
form of the program and putting information into the symbol
table and other tables. A complete syntax and semantic check of
the program is also performed.

The standard apalyzers are controlled by the syntax of the
program. 1In fact the trend has been to separate the syntax from
semantics as much as possible. When the syntax analyzer
(parser) recognizes a source language construct it calls a so-
called semantic procedure or semantic routine which takes the
construct, checks it for semantic correctness, and stores
necessary information about it into the symbol table or the
internal form of the program. For example, when a simple
declaration is recognized, a semantic routine will check the
declared identifiers to make sure they have not been declared
twice and will add them to the symbol table with the declared
attributes. When an assignment statement of the fornm

<variable> := <expression>

is recognized, a semantic routine will check the <variable> and
<expression> for type compatibility and will then put the
assignment statement into the internal program.

6 Introduction

The Internal Source Program

The internal representation of the source program depends
largely on how it is to ke manipulated later. It may be a tree
representing the syntax of the source program. It may be the
source program in something called Polish notation. Another
form used is a list of (operator, operand, operand, result)
quadruples, in the order in which they are to be executed. For
example, the assignment statement "A = B + C * D" would appear
as :

¥ ¢, D, M
+, B, T1,7T2
=, 12, A,

where T1 and T2 are temporary variables created by the compiler.
The operands in the above example would not be the symbolic
names themselves, but pointers to (cr indexes to) the symbol
table elements which describe the operands.

Preparation for Code Generation

Before code can be generated, it is generally necessary to
manipulate and change the internal frogram in some way. Runtime
storage must be allocated to variables. In FORTRAN, COMMON and
EQUIVALENCE statements nust be processed. One important point
included here is the optimization of the program in order to
reduce the execution time of the object program.

Code Generation

This is the actual translation of the internal source progranm
into assembly language or machine language. This is perhaps the
messiest and most detailed part, but the easiest to understand.
Assuming we have an internal ferm of quadruples as outlined
above, we generate code for each quadruple in order. For the
three quadruples listed above we could generate, on the IBM 360,
the assembly langquage

L 5,C Put C in register 5

M 4,D The result of the mult. is in regs. 4,5
A 5,B Now add B to the result of the mult.

ST 5,a Store the result

In an interpreter, this part of the compiler would be replaced
by the ©program which actually executes (or interprets) the
internal source progranm. The internal form for the source
program in tnis case would not be too much different.

A Brief Look at the Compilation Process 7

Figure 1.1 represents a logical connection of the cogpiler
parts rather than a time ccnnection. 2All four of tye logically
successive processes -- scanning, amnalysis, preparation for code
generation and code generation -- can be perfor@ed in the order
given by Figure 1.1, or they could be performed in a parallel,
interlocked manner. One criterion for this is the amount of
available memory. It is often advantageous or even necessary to
have several passes (core loads). Hopefully in these cases the
"other information" can te kept in memory to save I/0 time.
Other criteria are the goals of the project. How fast should
the compiler itself be? How fast should the object program be?
How much debugging facilities should the object program provide?
Another factor is the number of people on the project. The more
people, the more passes there are likely to be, so that each can
be responsible for a distinct and separate part. :

It is also true that not all the parts need .be used. In a
one-pass compiler, the inteérnal form of .- the program is hot
necessary, while the preparation and code gendration parts are
fused with the semantic routines of the semantic analyzer. A
typical one-pass scheme is given in Figure 1.2. The syntax
analyzer calls the scanner when it needs a new symbol and calls
a procedure when a construct is recognized. This procedure does
semantic checking, storage allocation, and code generation for
the construct before returning to the parser.

Not all languages are structured so that they can be
translated by a one-pass compiler.

One may well ask where the pain difficulties lie in
implementing a compiler. The scanner is almost trivial and is

well wunderstood. Syntax analyzers are also fairly well
understood for the simple formal languages we deal with. 1In
fact, this part can be largely automated. (Since syntax has

been formalized, much of the research in compiler writing has
dealt with it instead of semantics.) The hardest and "dirtiest"
parts are semantic analysis, program preparation and code
generation. All three are interdependent and must be designed
together to a large extent, and the design can change radically
from one object progranm language and machine to another.

With this brief introduction we are ready to begin with our
first subject =~ formal language theory and its application to
compiler construction. If you wish (it is not necessary),
glgnce over the next section which gives some examples of
existing compilers in order to reinforce the material presented
here.

