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Definition of some units

Angstrém 1A=10"""m  (order of magnitude of
_ the atomic dimensions)
Fermi 1F =10""%m (order of magnitude of
' -the nuclear dimensions)
Barn ' 1b = 10722 m? = (10* A)® = (10 F)?
Electron Volt . ~ 1eV = 1.602189(5) x 107'° joule

Useful orders of magnitu&a

Electron rest energy : m.cf ~ 0.5 MeV" [0.'511 003(1) x 10%eV]
Proton rest energy : M,c? =~ 1 000 MeV [938.280(3) % 10%eV]

Neutron rest energy : M,c? ~ 1000 MeV [939.573(3) x 10%eV]

One electron volt corresponds to :

- [afrequency v =~ 24 x 10" Hz ihrough the relation E = hv
‘ "[2.417970(7) x 10** Hz]

a wavelength 1 ~ 12000A through the relation 4 = ¢/v ‘
| [12398.52(4) A]

a wave number 5 & 8000 cm™* "8 065.48(2) cm™ 1]

a temperature T =~ 12000 K through the relation E = kpT
L [11604.5(4) K]

In a | gauss magnetic field (10~ Tesla):

[ the electron cyclotron frequency v. = /2 = — qB[2nm,
is v~ 2.8 MHz - [2.799225(8) x 10° Hz] - |
< the orbital Larmor frequency v, = @ f2n = — jgBlh = v,J2 -
isvy~ 1.4 MHz [1.399 612(4) x 10° Hz]

L (this corresponds by definition to a g = | Landé factor)




Some general physical constants

Planck’s constant

Speed of light (in vacuum)"
Electron charge
Electron mass

Proton mass

Neutron mass

Electron Compton wavelength

Fine structure constant
' (dimensionless)

Bohr radius

Hydrogen atom ionization
energy (without proton recoil
eff ect{

Rydberg‘s constant

-~ "Classical” electron radius

Bohr magneton
Electron spin g factor
Nuclear magneton
Boltzmann’s constant A

Avogadro’s number

C My

h = Ll = 1.054 589(6) x 10734 joule second

{h = 6.626 18(4) x 10~ 2* joule second
2n

¢ = 2997 924 58(1) x 10% m/s

q = — 1.602 189(5) x 107 '° coulomb
m, = 9.109 53(5) x 1073 kg
1.672 65(1) x 10-27 kg
1.674 95(1) x 10727 kg

E LK X X

= 1836.1515(7)

[ 4, = hjmc = 2426 309(4) x 1072 A
A, = h/mc = 3.861 591(7) x 1072 A

' e? 1

dmcghe  he  137.0360(1)

a g% = 0529177 1(5) A

— B, = a’mcf2 = 13.605 80(5) eV

"Ry = — Ey, /hc = 1097373 18(8) x -10° cm"*

2

r, = —4— = 2.817 938(7) fermi

4neom ¢ _

Hp = qhi/2m, = - 9274 08(4) x 10724 joule/tesla
6. =2 x 1001159 657(4) '
= ~ gh/{2M, = 5.05082(2) x 10~27 joule/tesla

ky = 1.380 66(4) x 10~23 joule/K.

N, = 6.02205(3) x 10%




Directions for Use

This book is made up of chapters and their coniplemehts :

— The chapters contain the fundamental concepts. Except for a few
additions and variations, they correspond to a course given in the last year
of a typical updergraduate physics program. »

These fourteen chapters are complete in themselves and can be studied
independently of the complements.

— The complements follow the appropriate chapter. They are listed
at the end of each chapter in a “reader’s guide” which discusses the difficulty
and importance of every one of them. Each is labelled by a letter followed
by a subscﬁpt which gives the number of the corresponding chapter (for*
example, the complements of chapter V are, in order, Ay, By, C ..)- They can
be recognized immediately by the symbol . which appears at. the top of
each of their pages.

The complements vary : some are intended to expand the treatment of
the corresponding chapter or to provide more detailed discussion of certain
points; others describe concrete examples or introduce various physi‘cal
concepts. One of the complements (usually the last one) is a colléction
of exercises.

The difficulty of the complements varies. Some are very simple examples
or extensions of the chapter, while others are more difficult (some aré at
graduate level); in any case, the reader should have studied the material in the
chapter before using the complements.

The student should not try to study all the complement& of a chapter
at once. In accordance with his aims énd interests, he should choose a small
number of them (two or three, for example), plus a few exercises. The other
complements can be left for later study.

Some passages within the book have been set in small type and these
can be omitted on a first reading.
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A. INTRODUCTION

A. INTRODUCTION
1. Importance of collision phenomena

Many experiments in physics, especially in high energy physics, consist of
directing a beam of particles (1) (produced for example, by an accelerator) onto
a target composed of particles (2), and studying the resulting collisions : the various
particles* constituting the final state of the system — that is, the state after the
collision (¢f. fig. 1) — are detected and their characteristics (direction of emission,
energy, etc.) are measured. Obviously, the aim of such a study is to determine the
interactions that occur between the various particles entering into the collision.

Detector

Incident beam
-»> —
particles (1)

v

particles (2)

Detector

FIGURE 1

Diagram of a collision experiment involving the particles (1) of an incident beam and the particles (2)
of a target. The two detectors represented in the figure measure the number of particles
scattered through angles 0, and 6, with respect to the incident beam.

The phenomena observed are sometimes very complex. For example, if
particles (1) and (2) are in fact composed of more elementary components (protons
and neutrons in the case of nuclei), the latter can, during the collision, redistribute
themselves amongst two or several final composite particles which are different
from the initial particles; in this case, one speaks of “rearrangement collisions”.

* [n practice, it is not always possible to detect all the particles emitted, and one must often be
satisfied with partial information about the final system.
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CHAPTER Vill SCATTERING BY A POTENTIAL

Moreover, at high energies, the relativistic possibility of the “materialization” of
part of the energy appears: new particles are then created and the final state can
include a great number of them (the higher the energy of the incident beam, the
greater the number). Broadly speaking, one says that collisions give rise to reactions,
which are described most often as in chemistry : ‘

MW+Q — B +@+6) + .. (A1)

Amongst all the reactions possible* under given conditions, scattering reactions
are defined as those in which the final state and the initial state are composed of
the same particles (1) and (2). In addition, a scattering reaction is said to be elastic
when none of the particles’ internal states change during the collision. ‘

2. Scattering by a potential

We shall confine ourselves in this chapter to the study of the elastic scattering
of the incident particles (1) by the target particles (2). If'the laws of classical mecha-
nics were applicable, solving this problem would involve determining the deviations
in the incident particles’ trajectories due to the forces exerted by particles (2). For
processes occurring on an atomic or nuclear scale, it is clearly out of the question to
use classical mechanics to resolve the problem; we must study the evolution of the
wave function associated with the incident particles under the influence of their
interactions with the target particles [which is why we speak of the “scattering” of
particles (1) by particles (2)]. Rather than attack this question in its most general
form, we shall introduce the following simplifying hypotheses :

(¢) We shall suppose that particles (1) and (2) have no spin. This simplifies the
theory considerably but should not be taken to imply that the spin of particles is
unimportant in scattering phenomena. ' ,

(i) We shall not take into account the possible internal structure of particles (1)
and (2). The following arguments are therefore not applicable to “inelastic”
scattering phenomena, where part, of the kinetic energy of (1) is absorbed in the
final state by the internal degrees of freedom of (1) and (2) (cf. for example, the
experiment of Franck and Hertz). We shall confine ourselves to the case of elastic
scattering, which does not affect the internal structure of the particles.

(6ii) We shall assume that the target is thin enough to enable us to neglect
multiple scattering processes; that is, processes during which a particular incident
particle is scattered several times before leaving the target.

(iv) We shall neglect any possibility of coherence between the waves scattered
by the different particles which make up the target. This simplification is justified
‘when the spread of the wave packets associated with particles (1) is small compared
to the average distance between particles (2). Therefore we shall concern ourselves
only with the elementary process of the scattering of a particle (1) of the beam by
a particle (2) of the target. This excludes a certain number of phenomena which -

* Since the processes studied occur on a quantum level, it is not generally possible to predict
with certainty what final state will result from a given collision; one merely attempts to predict the
probabilities of the various possible states.
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A. INTRODUCTION

are nevertheless very interesting, such as coherent scattering by a crystal (Bragg
diffraction) or scattering of slow neutrons by the phonons of a solid, which provide
valuable information about the structure and dynamics of crystal lattices. When
these coherence effects can be neglected, the flux of particles detected is simply the
sum of the fluxes scattered by each of the A" target particles, that is, A~ times the
flux scattered by any one of them (the exact position of the scattering particle inside
the target is unimportant since the target dimensions are much smaller than the
distance between the target and the detector).

(v) We shall assume that the interactions between particles (1) and (2) can be
described by a potential energy V(r, — r,), which depends only on the relative
position r = r, — r, of the particles. If we follow the reasoning of § B, chapter VII,
then, in the center-of-mass reference frame* of the two particles (1) and (2), the
problem reduces to the study of the scattering of a single particle by the potential V(r).
The mass u of this “relative particle” is related to the masses m, and m, of (1) and (2)
by the formula :

(A-2)

3. Definition of the scattering cross section

Let Oz be the direction of the incident particles of mass u (fig. 2). The poten-
tial ¥(r) is localized around the origin O of the coordinate system [which is in fact

Detector D

Incident beam

v T
g » , - Sy ~ i
0, § , :
> 4 ! .
> Region where the i ; 2 1 4 17 , !
potential is effective { . b ;
FIGURE 2 ] f. @
The incident beam, whose flux of particles is F;, is par hllel tg (lie &-)ZI& Ozmit is! qssuméd to be, }
much wider than the zone of influence of the potential} V(r), wwhich is‘centered af°0. Far erf

this zome of influence, a detector D measures the number “dn of particles’ scittéred per unit’
time into the solid angle d©, centered around the direction defined by the polar angles  and ¢.
The number dn is proportmnal to F, and to dQ; the coefficient of proportionality o (6, (p) is,

by definition, the scattering “cross section” in the direction (6, o).

»

* In order to interpret thé results obtained in scattering experiments, it is clearly necessary
to return to the laboratory reference frame. Going from one frame of reference to another is a simple
kinematic problem that we will not consider here. See for example Messiah (1.17), vol. 1. chap. X. § 7.
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CHAPTER VIli SCATTERING BY A POTENTIAL

the ¢enter of mass of the two real particles (1) and (2)]. We shall designate by F,
the flux of particles in the incident beam, that is, the number of particles per unit
time which traverse a unit surface perpendicular to Oz in the region where z takes on
very large negative values. (The flux F; is assumed to be weak enough to allow us
to neglect interactions between different particles of the incident beam.)

We place a detector far from the region under the influence of the potential and
in the direction fixed by the polar angles 6 and ¢, with an opening facing O and
subtending the solid angle dQ (the detector is situated at a distance from O which
is large compared to the linear dimensions of the potential’s zone of influence).
We can thus count the number dn of particles scattered per unit time into the solid
angle d@ about the direction (0, ¢).

dn is obviously proportional to d€2 and to the incident flux F;. We shall define
a(0, @) to be the coefficient of proportionality between dn and F; dQ

| dn = F, (6, 9)dQ | | (A-3)

The dimensions of dn and F, are, respectively, 7~ ! and (L*T')™*. a(6, ¢) therefore
has the dimensions of a surface; it is called the differential scattering cross
section in the direction (0, ¢). Cross sections are frequently measured in barns and
submultiples of barns :

1 barn = 1072* cm? (A-4)

The definition (A-3) can be interpreted in the following way : the number of
particles per unit time which reach the detector is equal to the number of particles
which would cross a surface o(0, ¢) dQ placed perpendicular to Oz in the incident
beam.

Similarly, the total scattering cross section o is defined by the formula:

¢ = ja(e, ) dQ : (A-5)

COMMENTS:

(f) Definition (A-3), in which dn is proportional to d<Q, implies that only the
scattered particles are taken into consideration. The flux of these particles
reaching a given detector D [of fixed surface and placed in the direction (6, ¢)]
is inversely proportional to the square of the distance between D and O (this
property is characteristic of a scattered flux). In practice, the incident beam
is laterally bounded [although its width remains much larger than the extent
of the zone of influence of V(r)], and the detector is placed outside its
trajectory so that it receives only the scattered particles. Of course, such an
arrangement does not permit the measurement of the cross section in the
direction ¢ = 0 (the forward direction), which can only be obtained by
extrapolation from the values of (8, ¢) for small 6.

(ii) = The concept of a cross section is not limited to the case of elastic scattering:
reaction cross sections are defined in an analogous manner.
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