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~ Preface

This text is intended for a first course in program verification systems, and
consistent and complementary definitions of the semantics of programming
languages. In order of emphasis, it treats axiomatic, operational, transla-
tional, and denotational semantics. Although program proving is covered
extensively, this text also shows that the different semantics are appropri-
ately related. Finally, because of its focus on Hoare-style Axiomatizations
and semantics of while programs, this text serves as an introduction to
programming (or Hoare) logics.

1 began writing this text after being drafted to teach advanced undergradu-
ate and graduate-level courses in program verification and the semantics of
programming languages, a subject for which there were no adequate intro-
ductory texts. Excellent advanced texts existed, but they were too difficult for
the graduate students who had not taken the undergraduate course. Because
most computer science students enjoy programming, I feel that an introduc-
tory text should emphasize program proving and suggest relevant program-
ming projects. At the same time, students need to realize that verification
systems and semantics are not self-evident formalisms to the cognoscenti
that should be applied uncritically. Consequently, this text highlights the
importance of consistent and complementary definitions of programming
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vi . . Preface

language semantics by, for example, stressing the role of soundness proofs in
\}iqdicating verification systems. Furthermore, relevant aspects of first-order
logic andwPeano arithmetic are accented here for two reasons: first, they are
needed in program proving, and second, they facilitate the explication of key
semantic concepts (e.g., the weakest precondition).! A novel feature of this
text is its use of “free” logic and arithmetic to handle run-time errors in the
final two chapters. .

Advanced undergraduates and beginning graduate students in computer
science at three universities have used drafis of this text. Professional pro-
grammers should also find it suitable for independent study (without formal
classroom instruction). The text presumes that the student has some back-
ground in concepts of programming languages and in discrete structures (in
particular, sets, relations, functions, mathematical induction, first-order
logic, formal proofs, and the Peano axioms for the natural numbers). How-
ever, Chapter 0 reviews the basic mathematical tools used in the text and, in
general, the text covers preliminary material in ehough detail so that it
should be comprehensible to a diligent reader with little background in some
of these areas. Students who have mastered the material in this text should be
prepared for a second course using one of the more advanced texts listed in
Suggestions for Further Reading.

When feasible, the text follows standard notational conventions as repre-
sented in de Bakker’s excellert advanced text. And, to make semantic analy-
sis tractable in this introductory text, we impose a number of restrictions on
the syntax of our programming languages. Our approach is to introduce a

-minilanguage in each chapter to simplify treatment of new concepts. Al-
though we deal primarily with extensions of the class of while programs,
represented by dialects of Pascal (Chapters 1 and 4 through 6), we also treat
flowchart programs, represented by dialects of BASIC (Chapters 2 and 3).
Despite the fact that BASIC’s goto command complicates semantic descrip-
tion, so do the restricted transfer of control statemients advocated by propo-
nents of program intelligibility. In program verification today, the methods
of Floyd remain a viable alternative to Hoare Axiomatizations, and flow-
chart programs provide a convenient framework for developing the power
and simplicity of Floyd’s methods. Furthermore, the commands of flow-
chart programs are more similar to the instruction sets of conventional
machines than the statements of while programs, and flowchart programs
are the “meanings” of while programs under the translational semantics
presented in Chapter 4.

Figure P.1 presents a checklist of chapter contents. To avoid developing
the intricacies of many-sorted logic, only integer-type variables are used.

! Applications of the Consequence Rule in programming (Hoare) logic are justified, in part, by
proofs in arithmetic. In Chapter 5, the symbiosis of arithmetic and programming [ogic is most
perfect: Proving programmer-defined functions correct in programming logic justifies the in-
troduction of function-call axioms into arithmetic.



Preface vii

The sections numbered 0 in Chapters 5 and 6 introduce two critical mathe-
matical concepts — free arithmetic and concepts of denotational semantics
that are essential for understanding subsequent sections.

In Chapter 0, it is important for students to work through enough natural
deduction proofs and proofs in arithmetic to develop an intuition of when, in
the Hoare Axiomatization, the Consequence Rule can be applied and, in the
Floyd Method, when a verification condition holds. Furthermore, by work-
ing through some formal proofs in arithmetic, students will comé to appreci-
ate the fact that a natural deduction system is truth-preserving, as contrasted
with the Hoare Axiomatization of Chapter 1, which is only validity-preserv-
ing. Chapter 0 can be reviewed in about a week by mathematically mature,
students. In Chapter 1, it is essential for students to work through at least

-three or four program-proving exercises for them to understand the Hoare
Axiomatization. Because program proofs in the formalism of Chapter | can
be rather long, I generally postpone the proofs of more intricate programs
until Chapter 2. And, as students will learri, program-proving can be fun! In
Chapters 3 and 4, more interesting algorithms such as sort programs can be
proven, but I generally emphasize finding loop invariants and semantic
issues because thorough program proofs are long and complex. Students
should work through one or two of the program-proving exercises in enough
detail to appreciate the aspects of the minilanguage giving rise to these
complexities (e.g., assignments to subscripted variables), as these aspects are
obstacles to practical program proving. Either program proving or semantic
issues can be emphasized in Chapters 5 and 6. Many students will be moti-
vated by the programming exercises. I usually do not assign more than one
programming exercise in a semester because meaningful programming ex-
ercises tend to be long.

I recommend working through the chapters in the order they are pre-
sented. If there is not enough time in a one-semester course to cover ail seven
chaptersand you wish to spend some time on subprograms and rudimentary
denotational semantics (Chapters 5 and 6), you can cover lightly — or even
skip altogether —Chapters 3 and 4. If you wish to skim over the more
mathematical material, it can be found in Sections 0.2, 0.3, 0.5, and 0.6,
Section 1.4, Section 2.4, Sections 3.4 and 3.6, Section 4.3, Sections 5.0 and
5.4, and Sections 6.0, 6.5, and 6.6.

I wish to thank Russ Abbott, Paul Kenison, Hugues Leblanc, Donald
Martin, Edward Smith, Ivan Sudburough, George Weaver, Anita Gleason,
Paul Le¢, Faith Lin, Phil Mahler, Paul Mayer, Ridge McGhee, Kevin Meier,
and Weidong Wang for their comments on earlier versions of this text. Faith
Lin created the subject index and assisted in proofreading.

Tyngsboro, Massachusetts’
June 1988



Figure P. 1
Checklist of

Topics
by Chapter

CHAPTER O

First-order logic, natural deduction, axiomatization and the intended se-
mantics of the first-order theory of the integers (Peano arithmetic extended
to the negative integers), properties of relations (e.g.. orderings), and Nother-
ian induction.

CHAPTER 1

While programs in a Pascal dialect, operational semantics (Cook - de Bakker
style), the concepts of partial and total correctness, Hoare Partial Correctness
Axiomatization, and soundness.

ix



x Figure P.1: Checklist of Topics by Chapter

CHAPTER 2

Flowchart programs in a BASIC dialect, operational semantics, the Floyd
Method (inductive assertions for proving partial correctness and well-
founded sets for proving termination), and soundness.

CHAPTER 3

i:ntension of the BASIC dialect in Chapter 2 to cover arrays and sequential
input/output.

CHAPTER 4

I:xtension of the Pascal dialect in Chapter 1 to cover arrays, stacks, and
input/output. Hoare Total Correctness Axiomatization, correctness of a
translation of the new dialect of Pascal into the BASIC dialect of Chapter 3.
comparison of the Hoare and Floyd Methods, and difficulties expressing
specifications in first-order languages.

CHAPTER 5

Free logic for handling run-time errors, extension of the Pascal dialect in
Chapter | to cover nonrecursive functions and procedures. environments,
static scoping, call-by-value and call-by-reference. Hoare Total Correctness
Aviomatization, and soundness.

CHAPTER 6

Rudimentary concepts of denotational semantics, modification of the Pa-
scal dialect in Chapter 1 yielding a class of tail recursive procedures. Hoare
F'otal Correctness Axiomatization, correctness of a translation of tail recur-
sive programs into while programs, equivalence of the denotational and
operational semantics, weakest preconditions, and relative completeness.
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Introduction

Some time ago, while working as a programming consultant. I was asked to
implement an algorithm for scheduling plant shutdown times. The specifica-
tion for the ““algorithm™ had been written by an accountant in an informal,
but seemingly thorough, manner. I developed a program and, after consider-
able program testing, turned it over to the plant’s computer center for pro-
duction runs. A few months later, I received a frantic call. My program had
begun assigning plant workers negative vacation times, which, needless to
say, the workers did not appreciate! After studying the unfortunate runs for
some time, | discovered that the problem lay in the specification. It became
apparent that no program could be written for the specification. That is, the
specification was unsatisfiable. When 1 pointed out the problem to the ac-
countant, he simply replied that “‘the world is filled with inconsistencies.” At
first, I was impressed by his response, but not for long, as higher-level man-
agement soon made it clear that they did not want any of the world’s incon- -
sistencies running around in their scheduling programs.

Computer users in government and industry constantly are demanding
more reliable computer systems. Part of this demand is for fault-tolerant
systems that will continue to perform correctly when components fail or
faults occur. But what does it mean to speak of a system, consisting of



2 Introduction

hardware and programs (software and firmware). “*performing correctly’? In
*this text, we study this question in the case of programs. We analyze what it
means for a program to be correct, and present verification techniques for
proving programs correct. For as my accountant friend and I discovered at
the expense of the plant workers, testing a program does not always establish
its correctness; crucial test cases may be overlooked or there may be too
many cases to test. Program correctness must be understood in the context of
a mathematical theory.

No user wants an incorrect program, but some users cannot afford even a
single “bug” in their programs, as program failures could result in the loss of
life and expensive resources. To that end, for example, the Department of
Defense Security Center has developed standards for evaluating the security
features of commercially available computer systems. For a computer sys-
tem to receive the highest security rating, the tools of formal logic must be
used in establishing the correctness of the system. The reliability of the ““Star
Wars" system, for example, hinges in part on the possibility of proving that
programs meet their specifications. Another government agency has funded
development of a provably fault-tolerant computer system to control future
commercial aircraft that will be inherently unstable to improve fuel eth-
ciency. Similar efforts in program verification are contemplated in England
and other countries. Like it or not, ready or not, program verification is with
us. Soon we will see demands for provably correct computer systems for
controlling nuclear power plants, life support equipment in hospitals, elec-
tronic funds transfer systems, and other critical applications.

Program correctness is a semantic concept. In keeping with the tradition
of mathematical semantics developed by Alfred Lindenbaum, Alfred Tarski.
Leon Henkin, Saul Kripke, Dana Scott, Christopher Strachey. and others,
we understand semantics to give meaning to linguistic expressions by assign-
ing them denotations. Typical denotations are an object (an integer), a set of
objects (the even integers), and a set of ordered pairs of objects (the greater
than relation > on the integers), and so forth. In the siudy of logics. one
typically distinguishes between syntax, semantics, and a deductive system.
In the case of a programming language, one typically specifies the context-
free aspects of the syntax in terms of a BNF grammar. The semantics assigns
denotations to the syntactic objects specified by the grammar. For example,
the semantics assigns to an integer expression (a syntactic or linguistic ob-
ject) an integer (a mathematical, nonlinguistic object), and it assigns to an
assertion (a syntactic object) a truth-value (true or false) as a denotation. The
deductive system (verification system) provides a means of arranging asser-

"tions into proofs. In other words, the deductive system lets us prove (verify)
that our programs do what they were intended to do (as formalized in
specifications, which we discuss in the following paragraphs).

In programming language semantics, many writers distinguish between
“axiomatic” semantics (discovered by Anthony Hoare), “‘translational” se-
mantics, “‘operational” semantics (developed, as we shall study it, by Ste-
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phen Cook and Jaco de Bakker), and *“denotational” semantics (discovered
by Dana:Scott and Christopher Strachey). Roughly, these semantics may be
characterized as follows. The axiomatic semantics is a program verification
system consisting of axioms and rules of inference. The translational seman-
tics is provided by a programming language translator that specifies a map-
ping of a source program to a target program (the meaning of the source
program). The operational semantics is given by a description of the se-
quence of machine states passed through dunng program execution. The
denotational semantics is more abstract, as it denotes the meaning of a
. program in the form of a mapping from machine state to machine state.

These different semantics are said to be “complementary” because they
can serve different purposes, and they are said to be “consistent” because
they can define one and the same programming language. Complementary
semantics are needed because many writers believe that the fundamental
semantics is denotational semantics for the language designer, operational
semantics for the language implementor developing an interpreter, transla-
tional semantics for the implementor developing a compiler, and axiomatic
semantics for the language user writing reliable programs. The different
semantics must be mutually consistent (or equivalerit in some sense) if the
implementors are to realize properly the language design and the users are to
write software correctly. To illustrate the point on consistency in the ex-
treme, consider the absurdity of selecting a Pascal eompﬂertotmnsme LISP
(as opposed to Pascal) source code.

The terminology used in the last paragraph underscores the importaace of
different semantic definitions being consistent and complementary, but it
also has some problems. The terms “axiomatic semantics” and “transla-
tional semantics” are somewhat out of keeping with existing mathematical
practice, because axiomatic semantics does not (directly) assign denotations.
to programs, and translational semantics does not assign the usual sort of
mathematical entities (set theoretic objects). The “operational”-*‘denota-
tional” terminology is somewhat misleading as the operational semanticsas
well as the denotational semantics can deliver denotations fer syntactic
expressions, In fact, whenever both the operational and denotational se-
mantics assign a denotation to the same syntactic object, they must deliver
the same denotation (or dénotations that are equivalent-in some suitable
sense). If the two semantics do not deliver the same denotation, something is
seriously wrong with one or both of them. The difference between the two
semantics is in how the denotations are “delivered.” In particular, the mean-
ing of a program is a function mapping the set of states (memory configura-
tions) into itself. The operational semantics is described in terms of a ma-
chine executing program statements, leaving a trace or sequence of machine
states. Roughly, it specifies the meaning of a program point-wise: given-an
. initial state, the meaning of a program is the state (if it exists) in which the
program terminates. The denotational semantics abstracts from machine
implementations, describing the semantics in terms of various mathematical
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constructions (e.g., the least fixed points of appropriate functions). If we
restrict our attention to nonrecursive programs, the only structured pro-
grameing construct for which the operational and denotational semantics
differ substantially is the while statement. We shall examine that difference
in Chapter 6. ]

Program correctness, as we shall study it, is a relativized concept because
it is defined in terms of a specification and we will presume that any given
specification is correct. A specification consists of a pair of assertions— the
precondition (or input assertion) and the postcondition (or output asser-
tion). The precondition describes the permissible values of variables when
program execution begins, and the postcondition prescribes the values vari-
ables-must have when the program terminates. A program is totally correct
with respect to a specification consisting of a precondition p and a postcon-
dition g provided that, if p is true when execution begins, then the program
will terminate and g will be true on termination. The program is partially
correct provided that, if p is true when execution begins and if the program
terminates, then g will be true on termination. Total correctness is the more
natural concept in most contexts. However, partial correctness is usually
easier to work with, and many important works on program correctness have
dealt with it exclusively. We shall define these two concepts of program
correctness more rigorously in the chapters that follow.

A deductive or verification system is said to be sound if no incorrect
program can be “proven” correct. Beginning in Chapter 1, we will prove the
soundness of most of our verification systems immediately after presenting
them. We do this to make sure that each verification system contains no
“bugs” as well as to fortify your intuitions with the sense of what makes each
verification system tick. A deductive system is also said to be complete if
every correct program can be proven correct. As we shall see, our verification
systems are not complete in this sense, but most of them are complete in a
weaker, relative sense. A verification system is called “relatively complete” if
the programming part of the verification system does its work fully. The
incompleteness of arithmetic (which Kurt Gadel proved in 1931)is entirely
responsible for the incompleteness of relatively complete verification sys-
tems. The relationships between syntax, operational and denotational se-
mantics, and verification system are depicted in Figure I.1.

A verification system must be proven correct with respect to a semantics
—operational or denotational — for it to be trustworthy. An unsound verifi-
cation system is at best useless and at worst dangerous, for in it one can prove
falsehoods. Suppose, for instance, that you were given a verification system
in which you could write down (prove) any assertion you choose. You could
prove many properties about programs or whatever. You could prove, say,
that your very first program gave a constructive proof of Fermat’s Last
Theorem, that your program established that x=x-+1, or that (assuming an
appropriate encoding of assertions into the language of arithmetic) the moon
was made of green cheese. You-could prove many things, but that certainly
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Syntax

(linguistic expressions)

Semantics assertions

arragned into Verification System

assigned

(denotations) - (proofs)

soundness
and
completeness

Operational

equivalence
Denotational

FIGURE 1.1. Relationships between syntax, semantics, and verification systems.

would not mean that they were true. You would have been swept away by the
runaway inference ticket that licenses one to prove anything.

You may say that this is all very silly, that you would never use an
unsound verification system. In the unfortunate history of program verifica-
tion technology, however, many systems for specifying and verifying pro-
grams have been developed without a mathematical semantics. And al-
though these systems have been used to “prove” programs correct, many of
these systems themselves have not been correct. As a result, incorrect pro-
grams have been “proven” correct. And, as a case in point, technical papers
on the Assignment Axiom for arrays were, for years, filled with errors. (We
shall explore some of the intricacies of the Axiom of Assignment for arraysin
Chapter 3.)

Unsound verification practices can surface anywhere. For instance, in the
late 1970s, an office of the Department of Defense funded the development
of the programming language EUCLID, which was intended to facilitate the
development of programs that could be easily verified. The designers of
EUCLID did develop proof rules, but they neglected to provide a semantics.
In the end, they were forced to admit that they could not vouch for the
correctness of their verification system. Indeed, they could not show correct-
ness without first providing a semantics, for correctness is a semantic con-
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cept. In another instance, as recently as 1983, the Department of Defense
Security Center’s evaluation criteria for secure computer systems included
only one sentence about semantics, and nothing about the correctness of
specification and verification systems.

In my opinion, program verification and semantics are most worthy of
study as mathematical aspects of computer science. Further, I am convinced
that study of these subjects has practical import. At the least, some basic
understanding of them is required to understand the advanced literature on
programming languages as well as the ongoing debate on the practicality of
verification. More impertantly, their study enhances one’s ability to reason
informally about programs and write correct programs. Furthermore, their
study may suggest criteria for evaluating and designing programming lan:
guages if, as I believe, only programming languages with reasonable formal
verification systems and semantics can be used to develop reliable software.

I do not believe, however, that large-scale program verification, as de-
manded by some of the sy:tems mentioned previously, is practical in the
near future. As will be seen in the following chapters, verification of even
moderately realistic programs is complicated. Due to results in undecida-
bility and complexity theory, we know that mechanical theorem-proving
techniques are of limited assistance, and that we must depend on human-ori-
ented proof techniques such as the natural deduction system presented in
Chapter 0. There are also technical problems in expressing certain specifica-
tions, botk: of a formal and an informal nature. The formal problems are
touched upon in Chapter 3. The informal problems relate to the difficulty of
spelling out a user’s needs in a formal specification, as might be gleaned from
the scheduling algorithm fiasco mentioned at the beginning of this introduc-
tion. A formal specification may not capture the user’s informally stated
objectives, and, even if it does, the user’s articulated objectives may be
misguided, immoral, or just plain wrong.

On the other hand, I am not convinced that program verification will
never become a practical activity. Some events that would make program
proving more practical are basic discoveries in the mathematical theory of
definitions, acceptance of semantic standards for programming language
designs, development of software tools to assist humans in program proofs,
and initiation of training programs for “proof engineers.” I make no predic-
tion on the practicality of program verification in the twenty-first century.s



