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Preface

Electronic techniques have always been closely associated with nuclear
radiation measurements and in recent years such techniques have become
extensively used in many disciplines. At the same time the scope and com-
plexity of the techniques has greatly increased. This has been occasioned
partly by the need to exploit the characteristics of semiconductor detectors,
but also by the ready availability of circuit elements such as field effect
transistors, tunnel diodes and integrated circuits. The user is now faced with
a formidable array of techniques; in this book I have attempted to provide
the basis for a systematic appraisal of electronic techniques associated with
nuclear particie detection.

In writing the book it has proved impossible to cite all of the vast number
of original publications relevant to the subject. The approach therefore has
been necessarily selective. For each topic precedence has generally been
_ given to any theoretical analyses, where such exist. I have then attempted
to isolate the major trends in experimental techniques and these have been
illustrated with what appeared to be the best examples of circuits published
in recent years,

By adopting this scheme the treatment should appeal to a spectrum of
readership. Commercial electronic equipment is readily available. but users
will need to know the scope of the techniques available in order to assemble
equipment appropriate to any given application. Such users require a
knowledge of the possibilities and limitations of the techniques: this often
involves the familiar exchange of performance in one respect with per-
formance in other respects. For the more specialist applications the reader
should find that the topics are dealt with in sufficient depth to enable him to
design new circuits. :

This book arose out of a courseof lectures given for a number of years
to M.Sc. students. Some of the fundamentals of the subject nominaliy fall
within the fields of electronic engineering and statistics and, for that reason,
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may be unfamiliar or inaccessible to many readers. In order to provide a

reasonably self-contained treatment I have therefore included introductory
outlines of several of the relevant topics.

London 1973 P. W. NICHOLSON
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I

An Outline of Detection
Methods

1.1 Interaction of nuclear radiation with matter

1.1.1  Introduction

Nearly all detection methods, the Cerenkov detector being a notable excep-
tion, make use of the ionization or excitation produced in a detection
medium as a result of the absorption of all or part of the energy of the nuclear
particle. In the case of charged particles, ionization and excitation is pro-
duced directly by the interaction of the electromagnetic field of the particle
with the electrons of the detection medium and the resultant ionization and
excitation is distributed as a track centred on the track of the particle. In the
case of uncharged particles such as X- and y-ray photons, the particle must
first undergo some process, such as a photoelectric or Compton interaction,
which transfers all or part of its energy to an electron which in turn produces
the track of ionization or excitation. Similarly neutrons must undergo an
interaction, such as a collision with a nucleus, the charged product of which
then produces the ionization cr excitation. In consideration of their inter-
action with the detection medium the commoner nuclear particles may be
divided into four groups:

(i) heavy charged particles (protons, alpha particles, heavy ions, mesons)
(ii) electrons and positrons

(iit) X-rays and y-rays

(iv) neutrons

1.1.2  Heavy charged particlés

A heavy charged particle entering the detection medium loses its energy by
a succession of interactions, mainly between its electromagnetic field and
that of electrons in the medium, resulting in electronic excitation and
ionization. According to classical mechanics the maximum energy E,,,, that

55047038



2 Nuclear Electronics

an electron of mass m, can acquire in a collision with a particle of mass M
and energy E is given by

4moME

S GNPy

E ~ 1.
rnax (mo + M)), M ( 1)

The quantum mechanical treatment shows that there is a small probability
of the electron acquiring an energy slightly higher than the classical maximum
E_... The more energetic of the electrons, often termed ‘delta’ rays, can

Sj NE 102A
NE (02A \ Ge /S Ge
- 1mm NY Yy A
< £
o . @)
2 100 pm b a particles |00 em ©
w ~
4 o
m" -]
© 0
@ 5
K- C
e £
=4 10 um} -10em
O . . o
(14 ' particles air S
@
1um 1 1cm
0 1 [0) 100

Energy, MeV

Figure 1.1 Range of « particles and protons in various detector media.
Data taken from Goulding* for Si and Ge, Evans? for air, and Nuclear
Enterprises Ltd? for plastic scintillator type NE 102A

themselves produce further ionization; it is this factor that governs the
width of the track of ionization. Sincé the fraction of energy lost per collision
of the particle, given by (1.1), is small, the resulting deflections of the particle
path are small and the track is comparatively straight. Owing to the large
number of collisions necessary to bring the particle to rest, the range is
comparatively well defined (typically with a standard deviation of 1-5 %)-
For a given particle type and energy, if the range K, is known for a
medium of density p, and atomic weight 4,, then the range R, in a2 medium
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An Outline of Detection Methods 3

of density p, and atomic weight 4, may be estimated by a simple empirical
relation known as the Bragg-Kleeman rule:
R

L, A, (1.2)

R, —pl\/AZ

For mixtures and compounds the same rule can be used if an effective
atomic weight A is used where

nA, +n,A, + ...
JA =
nJA, +n,JA4; + ...
where n,, n,,... are the atomic fractions of the constituent elements of

atomic weights A4, 4,,.... Figure 1.1 shows the ranges of protons and
alpha particles calculated for various detection media.

(13)

1.1.3  Electrons and positrons

For energies up to 10 MeV, electrons lose their energy to the detection
medium mainly by excitation and ionization of the electrons of the medium,
as in the case of heavy charged particles. For higher energy electrons the
loss of energy as bremsstrahlung becomes increasingly important and the
intensity of this varies as Z2 where Z is the atomic number of the medium.
Thus, for example, 9 MeV electrons in lead lose as much energy due to
bremsstrahlung as due to ionization.

In absorption due to ionization, owing to the lower mass of the electron
compared to that of a heavy charged particle, a much greater fraction of the
particle energy is transferred to the absorber electron in each collision so
that the delta rays are correspondingly more energetic and are capable of
causing considerable secondary ionization at a greater distance from the
original particle track. For a 01 MeV electron in air about two-thirds of the
total ionization is due to secondary ionization.

Owing to the large energy loss per collision, the path of the particle shows
considerable deflections and the range is not weil defined. Since an electron
travels at a much higher velocity than a heavy charged particle of the same
energy, it spends less time in the vicinity of the absorber atoms and so the
rate of energy loss and the density of ionization are correspondingly less.
For this reason the range of electrons is much greater than that of heavy
particles of the same energy. Figure 1.2 shows the range (essentially an
approximate figure) for several detector media. For various medium atomic
weight absorbers the range, for a given energy, expressed in terms of mass
per unit area of the absorber, is approximately constant provided brems-
strahlung does not accout for significant energy loss. Finally for beta rays
having a maximum energy of E,,,. the nomogram in Figure 1.3 gives the
approximate percentage transmission for absorbers having different mass

A IS E A RS a8



4 Nuclear Electronics

per unit area when the absorber is interposed between source and detector
(external absorber), or where the source itself is thick and causing self-
absorption. .

Positrons have ranges differing only slightly from those of electrons of
the same energy. When brought to rest a positron will annihilate with a
neighbouring electron and emits the characteristic annihilation radiation of
two y-rays, each of energy myc® (511 keV), in mutually opposite directions.

100 T T
10}
Range
mm
o1t
0-0! 1 |
0-0l o1 1 ' 10

tlectron energy, MeV

Figure 1.2 Range of electrons in various detector media.
Data taken from Goulding* for Ge and Si, Nelms® for Nal,
and Nuclear Eaterprises Ltd? for NE 102A plastic scintillator

1.14 X- and y-rays

X- and y-rays lose energy in matter by three main processes:
(i) photoelectric effect
(i) Compton effect
(iii) pair production
In the photoelectric effect, all the en.rgy of the photon is transferred to an
electron, the original photon disappearing in the process. The process is



