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preface

Many good books on analytical mechanics have been written, and most of them
are still available. Therefore, the publication of another book on this subject must
be well justified.

The plan for writing this book grew out of the search for a textbook that
would be an introduction to analytical mechanics on the sophomore or junior
level, would cover the essentials of mechanics without being too lengthy, and
would have a well-balanced treatment of the foundations of mechanics and of
important examples. Moreover, the book should present the necessary back-
ground material for other advanced physics courses, especially for modern
physics and quantum mechanics.

Although these conditions impose strong limitations on the scope and the
content of the book, they still could be satisfied in several different ways. The
material selected for this book and its presentation reflect my personal views.
Other physicists might include additional material and /or delete certain sections
depending on their philosophies, interests, and teaching experiences.

The difficult problem of the selection of the material from the enormously
large field of classical mechanics had to be attacked from both ends: Which
topics are essential for the understanding of all of physics, and which areas of
mechanics can be omitted from a first course in analytical mechanics without
losing the broad overview? Concerning the size of the book, the second question
was of greater importance. Because most sophomores have little working knowl-
edge of partial differential equations, it was easy to decide against the inclusion of
fluid dynamics, potential theory, and wave propagations. Topics that are mathe-
matically too involved, such as the three body problem, were also omitted.
Chapters on noninertial frames and Hamilton’s principle were not included
because these topics usually are discussed in the second semester of a sequence of
mechanics courses. There remained the controversial issue of the treatment of
special relativity. I decided against the inclusion of this field because a survey
shows that most textbooks on introduction to physics, modern physics, and
electromagnetic fields cover special relativity in approximately thirty pages. In my
opinion, special relativity should be presented to physics majors in a separate
one-semester course because of its importance and its broad range of applicability
outside mechanics.

Returning to the first question, namely, what to include in this book, 1
decided to present first some background material in mathematics (Chapter 2)
needed for the precise formulation of mechanics. This material is intended as a
quick reference, and it should not be discussed at great length in the lecture for
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reasons of time. Kinematics (Chapter 3) is the logical starting point in mechanics.
Dynamics (Chapter 4) is most naturally approached in Newton’s formalism.
Oscillations (Chapter 5) and central forces (Chapter 6) provide important exam-
ples of broad applicability, many of which are exactly solvable. Many particle
systems (Chapter 7) are included because all systems consist of more than one
particle in reality. Lagrange’s and Hamilton’s formalisms (Chapter 8) are im-
portant for the foundations of advanced mechanics and other areas of physics, for
example, statistical mechanics, geometrical optics, quantum mechanics, and
quantum field theory. It would be nice to introduce these formalisms at an earlier
stage, but students need to have some working knowledge of Newtonian dy-
namics before they are exposed to more general ideas of mechanics. Although the
chapter on rigid body mechanics (Chapter 9) should logically be placed right after
many particle systems, some equations of rigid body mechanics are more easily
derived in Lagrange’s formalism, which justifies the placement of this chapter.
The last chapter (Chapter 10) on coupled oscillations (which are also best treated
in Lagrange’s formalism) provides the basis for the transition to the theory of
wave motion.

What is presented in this book is still more than what can be covered
efficiently in a one-semester course. It is left to the instructor to make additional
cuts.

Appendix 1 contains a list of some vector relations. The other appendixes
contain material that usually is not found in elementary texts but that I consid-
ered appropriate here.

The selected problems are all of a moderate degree of difficulty, and the
excessive use of mathematics has been avoided. Too much mathematics at the
beginner’s level may obscure the ideas of physics or frighten the students. Some
questions concerning the philosophy of science and the foundations of mechanics
have been included. Physics majors should not merely know that ma = F, they
should also have some understanding of how the building of mechanics is
constructed.

Analytical mechanics is logically and traditionally the first course in the
sequence of theoretical physics courses because basic concepts and principles are
introduced that are absolutely essential for the understanding of the other areas
of physics. It is a good sign that many students are interested in the exciting
frontiers of physics, but these students are advised to take the studies of the
fundamentals of mechanics very seriously. Only then is it possible to fully
understand the modern developments of physics that have their ultimate roots in
classical mechanics. Wherever possible, I have mentioned in the text the points of
departure of modern physics from classical mechanics and their relationships.

I have tried to present all material in a clear form and to avoid ambiguities,
jumps, and statements such as “. ... it can easily be seen that...” It is my opinion,
however, that a textbook should not contain every detail of a calculation or a
derivation. Spoon feeding does not help a student master his or her field of study.
All physics and mathematics textbooks should not merely be read but studied
with pencil and paper.

Klaus Rossberg
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chapter

Introduction

The begynnynge of every thynge is the hardiste.
SIXTEENTH CENTURY ENGLISH PROVERB

1.1 GENERAL CONSIDERATIONS ON PHYSICS
AND MECHANICS

Since their emergence, humans have tried to explore and understand nature.
Prehistoric humans sought to satisfy their basic need for survival; later, they
strove to satisfy their curiosity and their philosophical needs. Part of this human
endeavor is natural science.

Physics is the basis of natural science. It deals with the laws of matter over a
wide range of its forms—from elementary particles and atoms to macroscopic
objects, planetary systems, and the whole of our universe. It does not come as a
surprise that the laws of nature are different for the many forms of matter, but it
is one of the physicist’s strong beliefs that a unifying principle exists which would
allow him or her to derive from it the laws for all forms of matter. In spite of the
progress made in recent years a complete unifying theory has not yet been found.

Physics, like all branches of natural science, is founded upon observations
and experiments. A system of principles and relationships constructed to explain
the observed phenomena is called a hypothesis. As a result of creative inductive
reasoning, it is merely an unproven guess. A hypothesis becomes a scientific
theory if it has the ability to predict new phenomena. A scientific theory is true,
by definition, when it is consistently corroborated by experimental facts. It
cannot be proven true, but it can be proven wrong. Agreement between conclu-
sions derived from a theory and experimental confirmation can only lend support
to the theory. If the conclusions disagree with an experiment, then the theory
must be abandoned or amended.! Examples of the creation of new, enlarged
theories are numerous in physics. Two of the most striking examples are the
development of the theory of relativity and that of quantum mechanics.

Theoretical physics deals with the mapping of natural processes and proper-
ties of matter on a set of mathematical relations among well-defined quantities.
The language of mathematics is used because it is more precise than any other

'For a short but comprehensive discussion of the philosophy of science and the foundations of
physics see P. J. Brancazio, The Nature of Physics, Macmilian, New York, 1975.



known language and also because it allows us to express even complicated
relationships in a useful shorthand notation. The mathematical frame consists of
two parts, namely, the set of all definitions of the physical quantities, whether
observable or not, and the set of fundamental laws and axioms from which other
equations and rules can be derived. Mathematical simplicity is one of the
guidelines for developing a physical theory. Simplicity is most clearly expressed in
the forms of conservation principles (e.g., energy, momentum), symmetry princi-
ples? (e.g., the behavior of systems under certain space-time transformations), and
variational principles (extremum principles). Early in this century, it became clear
that the three types of principles are related to each other. The application of
various symmetry principles has led to insights in elementary particle physics
where dynamical laws have not yet been found.

Physics may be called an exact science in the sense that correct mathematical
reasoning allows us to derive not only qualitative statements but also quantitative
statements from the set of assumed fundamental laws formulated in mathematical
language. This is in contrast to common sense which may be directly applied to
some natural phenomena to derive qualitative statements only. But common sense
may play tricks. Seemingly “obvious” assumptions can lead to conclusions that
are not in agreement with the observed facts. (See Questions 1.4, 1.5, and 1.6.)

Physical quantities must be well defined, that is, they must have one and only
one meaning. A definition is the reduction of a concept to be defined to other
previously defined concepts. But the process of defining cannot be continued
indefinitely. Some fundamental (or primitive) quantities, notions, or concepts
must be accepted a priori, even in physics. For example, the concepts of space,
time, and matter cannot be defined. The fundamental concepts may seem fuzzy at
first, but they become clear when used repeatedly. They may also become subject
to revision; for example, the notion of a flat space-time continuum turned out to
be inappropriate in general relativity.

Much of our knowledge of nature is expressed in terms of the observable
quantities mass, position, momentum, energy, and so on. Observable quantities
are defined operationally by a measuring device, that is, by a prescription of how
the quantity shall be measured. Classical physics deals directly with these ob-
servable quantities, and it is assumed that they can be measured in principle with
unlimited precision. However, every attempt to apply the methods of classical
mechanics to the atom failed.> With the work of Heisenberg, Schroedinger, and
other pioneers of modern quantum mechanics it became clear that the observable
quantities do not directly describe microscopic systems, and that certain combina-
tions of observable quantities cannot simultaneously be measured with unlimited
accuracy. Also, some quantities needed to be introduced that were not observ-
ables at all. Although the realm of applicability of classical physics is limited,
quantities such as mass, position, momentum, and energy also have a meaning in
quantum mechanics. This is because all measuring devices from which we obtain
our information of nature are macroscopic systems that are subject to the laws of

2gee Section 6.3.
3Max Born in a letter to Albert Einstein (October 21, 1921): “'Die Quanten sind eine hoffnungs-
lose Schweinerei.” (The quanta are a hopeless mess.)
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Particles Fields

Analytical mechanics

Field
Velocities < Particle Quantum mechanics
speed of light: mechanics mechanics {wave theory)
Velocities Relatlylstlc Relativistic Relativistic
. particle quantum field theory
speed of light: mechanics mechanics

Figure 1.1 Diagram showing the relations between analytical mechanics, quantum mechanics,
and relativity.

classical physics. The examples cited should alert us not to take all physical
concepts for granted or to apply them uncritically to all areas of physics.

Analytical mechanics is logically and traditionally the first course in the
series of theoretical physics. The name originates from Lagrange’s book Mecha-
nique Analytique. Following Newton’s Principia, Lagrange derived analytically
from Newton’s axioms of motion the main parts of the theory of mechanics.
Analytical mechanics encompasses both particle mechanics and wave theory. The
relationship of analytical mechanics to other branches of physics is shown in
Figure 1.1.

1.2 REFERENCE FRAMES AND COORDINATE SYSTEMS

Three important concepts need to be introduced. A physical system is a distribu-
tion of matter on which observations are made and experiments are performed. A
reference frame is any part of the universe relative to which observations of a
physical system are made. The existence of matter and /or radiation is necessary
for a meaningful definition of the reference frame. A coordinate system is any
mentally constructed system attached to a reference frame relative to which the
physical system under investigation is described. Usually that particular coordi-
nate system is chosen which yields the simplest possible description of the system
and/or exhibits the largest possible degree of symmetry of the physical system.
Observers in two different reference frames may or may not measure the
observable quantities of a physical system with the same outcome. Even the
physical laws (e.g., force laws) may not be identical, which may be the case if at
least one reference frame is not inertial. (For the definition of inertial frame see
Section 4.2.) However, two different coordinate systems, which are attached to the
same reference frame, may still yield different descriptions of the physical system,
but the physical laws must be the same in these coordinate systems because the
laws of nature cannot be altered by a construction of the human mind. One often
uses the term coordinate system very loosely. Actually, it means a “reference frame
provided with a coordinate system.” The reader is asked to distinguish the term

REFERENCE FRAMES AND COORDINATE SYSTEMS 3



coordinate frame from the term reference frame in order to avoid possible
confusion.

1.3 STANDARD UNITS OF MECHANICS

All quantities in mechanics are based upon the three fundamental quantities:
length, time interval, and mass. The standard international units of these quanti-
ties are the meter, second, and kilogram, respectively, defined as follows:

1 meter = 1 m = 1,650,763.73 times the wavelength of light emitted from the
krypton isotope Kr® in the transition from the state 2 p, to the state 5d.*

1 second = 1 s = 9,129,631,770 times the period of oscillation between the
two hyperfine levels of the ground state of the caesium isotope Cs!?3.

1 kilogram = 1 kg = the mass of a platinum-iridium prototype cylinder
which is kept at the International Bureau of Weights and Measures in Sevres,
France.

Practically, it is sufficient to define the standard of length by the standard
meter which is also kept in Sevres, and to define the second as 1,/86 400 of the
mean solar day.

1.4 ON STUDYING PHYSICS

It may be appropriate here to take a closer look at the reasons why many students
experience difficulties when studying physics, especially during the first semesters.
One of the difficulties is directly related to the act of learning itself. Here,
learning is understood as the conscious process of acquiring knowledge or skills
with the purpose that the acquired knowledge may be actively reproduced and
applied when necessary. Pure memorization of equations or vocabularies is only a
form of passive reproduction. A person is able to actively reproduce if the object
under study has been viewed, investigated, and analyzed under several possible
angles. Learning, therefore, is a process that involves time; it does not occur in an
instant. All phases that a person goes through during a creative process’ (e.g.,
painting a picture) from the first vague idea to the completion of his or her work
also appear during the process of learning. In order to acquire certain technical
skills or to understand ideas or concepts, two seemingly contradicting require-
ments are essential—hard work, at times even accompanied by intense feelings of
frustration, followed by complete relaxation. If the facts of the learning process
are well understood, the active engagement in learning becomes more enjoyable
and the outcome of studying more gratifying and rewarding.

Other difficulties originate at the three steps involved in the mapping process
of the phenomena and the laws of nature on the language of mathematics, and
vice versa. The mapping process is outlined in Figure 1.2.

“The Comite Consultatif pour la Definition du Metre of the Comite International des Poids e
Mesures is currently discussing the exact wording of a redefinition of the meter as the distance
traveled by light in 1,/299,792,458 of a second.

5See Rollo May, The Courage to Create, W. W. Norton & Company, Inc., New York, 1975.
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Ordinary language Mathematical language

mapping

1. Description of > 2. Physical theory
the natural
process
common mathematical
sense deduction
4, Conclusions 3. Result

interpretation,
comparision with
the experiment

Figure 1.2 Diagram showing the path of the thought process in theoretical physics.

Step 1 to 2 is a creative process of the human mind. This is certainly true if a
new theory is developed. It is also true to a lesser degree if the theory is recreated
(learned), or if a set of equations needs to be found to solve an assigned
homework problem. Because a creative process requires insight and intuition
(which are products of the mind of the individual), a general prescription as to
how to establish the mapping from nature to the physical theory (or parts thereof)
cannot be given. J. A. Wheeler’s “first moral principle”® expresses these ideas in a
humorous way: “Never make a calculation until you know the answer.”

Mathematical difficulties that may appear in step 2 to 3 are usually overcome
as the student progresses in mathematics.

Step 3 to 4 is the comparison of the derived mathematical result with the
observed data. The translation from the “foreign” mathematical language to
ordinary language is usually much simpler than the inverse step 1 to 2.

The finding of the mapping 1 to 2 can be facilitated if one heeds the
following suggested study hints:

1. The definitions of physical quantities should not merely be memorized mecha-
nically. It is essential that the student understand all implications and
ramifications of the defined quantity. This very important advice is usually
underestimated or entirely ignored by students.

2. The student should learn to distinguish between the physical and mathematical
aspects of a physical problem. The progress from known equations to needed
ones is sometimes determined by physical arguments; sometimes it is purely a
mathematical derivation.

3. The student should learn to approach any physical problem in an economical
way, namely, from the general to the specific. It is not necessary to remember a
vast amount of equations and relations applicable to special cases only. The
clearer understanding of a physical theory would be negatively affected by too
much unnecessary ballast.

SE. F. Taylor, J. A. Wheeler, Space-Time Physics, W. H. Freeman & Co., San Francisco, 1966.

ON STUDYING PHYSICS 5



4.

All fundamental laws are simple because they express certain symmetries of
nature. (The physical theory becomes more and more complicated when the
laws are applied to larger and more complex systems, because the degree of
symmetries decreases.) Usually, the fundamental laws are easily learped. The
student needs to see however how these laws are applied to special cases.
Problem solving, therefore, is a necessity. It helps the student master all steps
from 1 to 4. The sentence “I really do understand the material—but I just
cannot solve the problems” is self-contradictory.

QUESTIONS

1.1 The modus tollens (way of reasoning) in logic is an argument of the form:

If H is true, then so is 1.
As evidence shows, 7 is not true.
Therefore, H is not true.

The fallacy of affirming the consequent is an invalid argument of the form:

If H is true, then so is I.
As evidence shows, I is true.
Therefore, H is true.

Discuss the importance of both arguments for the foundation of a scientific
theory.

1.2 Comment on “Physics is too difficult for the physicist.” (David Hilbert)

1.3 Ponder on “Science, like art, is not a copy of nature but a re-creation of her””’

and on “A physical theory, being an amalgam of inventions, definitions, and
laws, is regarded as a model for a certain part of nature, asserting not so much
what nature is, but rather what it is like.” 8

For the following “common sense” questions state your answer within 35
seconds. Do not use force diagrams.

1.4 A rope is hanging over a pulley. A person attaches himself to one end of the

rope and pulls on the other side to move himself up. Clearly, the force on the
pulley is equal to the weight of the person (if the weights of the rope and of
the pulley are neglected). The person now fastens the other end of the rope to
the wall. Does the force on the pulley remain the same?

L5 In 1654, Otto von Guericke, inventor of the air pump, demonstrated the

existence of air pressure by evacuating two brass hemispheres and having two
teams of eight horses pull on each side of the hemispheres. Assume that the
air pressure inside the sphere is low enough that the hemispheres could just be
pulled apart by the 16 horses. Assume now that the same air pressure exists as

’J. Bronowski, Science and Human Values, Harper & Row, New York, 1965.
8wW. Rindler: Essential Relativity, van Nostrand-Reinhold, New York, 1969.
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before, but that now one of the hemispheres is fastened to a rigid wall. Then,
eight horses cannot pull the hemispheres apart. True or false?

1.6 A wound up yo-yo is attached to a scale. The scale records the weight of the
yo-yo. If this is released to unwind itself downward, the scale records a force
(tension) that is smaller than the weight. Common sense would predict this
result also. After passing through the lowest point the yo-yo is moving
upward. Does the scale now indicate a force (tension) which is smaller than,
equal to, or larger than the weight?

QUESTIONS 7



