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Preface

Since the first edition of Antenna Theory and Design was published in 1981, there
have been major expansions of application areas for antennas, mainly in wireless
communications. In addition, in recent years new areas important to antennas have
emerged into prominence. This second edition has been expanded to include new
areas in antennas. Coverage of microstrip antennas (Sec. 5.8) as well as the use of
antennas in systems and measurements (Chapter 9) have been added. In addition,
the treatments of array antennas (Chapter 3), broadband antennas (Chapter 6), and
aperture antennas (Chapter 7) have been expanded. Also, since the first edition was
written there have been major advances in Computational Electromagnetics
(CEM), due in part to the use of more sophisticated antennas and antenna systems.
The second edition expands on the Method of Moments in Chapter 10, introduces
a succinct treatment of the Finite Difference-Time Domain (FD-TD) technique for
antennas in Chapter 11. and adds the topic of the Physical Theory of Diffraction
(PTD) to high frequency methods in Chapter 12. The objective in the second edition
has been to preserve the simplicity of the first edition, while adding modern topics.

This book is a textbook and finds its widest use in the college classroom. Thus,
the primary purpose is to emphasize the understanding of principles and the de-
velopment of techniques for examining and designing antenna systems. Handbooks
are available to supplement the fundamentals and antennas discussed here. We have
found that the first edition is in wide use by practicing engineers as well as students.
This is because of the applied nature of the material and the treatment of basic
topics that are directly useable for analyzing practical antennas. This is illustrated
by the material in Chapters 1 to 6 and 9, which do not rely heavily on mathematics
and use calculus sparingly.

Antenna Theory and Design covers antennas from three perspectives: antenna
fundamentals, antenna techniques, and the design of popular antennas. The first
four chapters stress antenna fundamentals. Since the student has probably had little
exposure to antennas, many fundamentals are presented in Chapter 1. The emer-
gence of antenna theory from Maxwell’s equations is developed, along with a phys-
ical explanation of how antennas radiate. The four types of antenna elements (elec-
trically small, resonant, broadband, and aperture) are introduced. The discipline of
antennas has its own terminology that is quite different from other areas of engi-
neering, so Chapter 1 includes definitions of many antenna terms. Chapter 2 ex-
amines simple radiating systems, such as dipoles, in order to solidify the principles
of Chapter 1 and to equip the reader to move forward with analysis of antenna
systems, such as arrays. that are treated in Chapter 3. Arrays are covered early in
the book to introduce the relationship between the current distribution on an an-
tenna and its spatial radiation characteristics using elementary mathematics. In ad-
dition, arrays are widely used in practice today. The discrete approach to antennas
(arrays) is followed in Chapter 4 with line source antennas, which introduce the
continuous form of antennas.

Chapters 5 to 7 give details on commonly used antenna elements. Chapter 5
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surveys the resonant antenna elements encountered in practice, including dipoles,
yagis, and microstrip patches. Chapter 6 covers broadband antennas such as helix,
spiral, and log-periodic antennas. Chapter 7 treats aperture antennas. Emphasis in
these chapters is on the operating principles using the fundamentals introduced in
the Chapters 1 to 4 and on design guidelines. As appropriate, data are presented
using numerical or experimental models, or computations based on theoretical for-
mulations. In addition, empirical formulas are often presented for easy evaluation
of performance parameters.

The synthesis of arrays and continuous antennas is presented in Chapter 8 for
shaped main-beam or low side-lobe applications. The use of antennas as devices in
systems is covered in Chapter 9, along with antenna measurements.

Chapters 10 to 12, as noted above, introduce CEM techniques for evaluating
simple antenna elements as well as large complex antenna systems. Here, as in all
the book, actual code statements are not listed. The wide variety of computing
environments and the availability of high-level mathematics applications packages
makes this inappropriate and unnecessary. Instead, some key computational and
visualization antenna software packages are made available on the World Wide
Web (see Appendix G).

It is important to be aware of the background that is assumed for this book. It is
not necessary that the reader have complete mastery of the following subjects, but
exposure to these topics is very helpful. A basic course in electromagnetics, such as
is commonly required in engineering and physics, is assumed. Mathematics used
often includes complex numbers, trigonometry, vector algebra, and the major co-
ordinate systems (rectangular, cylindrical, and spherical). Vector calculus is used at
various points and scalar integration is frequently used.

This book can be readily adapted to various academic programs at both intro-
ductory and advanced levels. For a first course, the text is usually used in a senior
elective or entry level graduate course. A one-semester introductory course usually
covers Chapter 1 to 6. For a master’s degree-level course, parts of Chapters 7, 8,
and 9 can be added. In a one-quarter senior course, material in the latter parts of
Chapters 3, 4, or 5 can be eliminated. A second course can focus on advanced design,
synthesis, and systems using Chapters 7, 8, and 9. Alternatively, a second course
can specializc on computational methods using Chapters 10 to 12.

Several features have been included to aid in learning and in preparation for
further self study. Defined terms follow the IEEE standard definitions. Literature
references found at the end of each chapter provide sources for further reading. In
addition, the bibliography in Appendix H lists literature sources by technical topic.
The appendices also include information on the radio spectrum, data on materials,
and important mathematical relations.

The authors are indebted to the many individuals who provided invaluable tech-
nical assistance to this second edition. The reviewers of the entire manuscript (two
of whom also reviewed the first edition) gave essential input on the organization of
the book and on several technical issues. Many students offered critical remarks
during classroom testing of the manuscript. In addition, special thanks are owed to
those who gave detailed evaluations, including Keith Carver (Secs. 5.8 and 6.2),
David Jackson (Sec. 5.8), Ahmad Safaai-Jazi (Secs. 6.2 and 8.4), Dave Olver (Chap-
ter 11), Buck Walter (Secs. 4.4 and 10.12), Gerald Ricciardi (Sec. 5.8), Marco Terada
(Sec. 7.6) and Krish Pasala (Sec. 12.15). One author (Gary Thiele) extends special
thanks to his son, Eric T. Thiele, for many long, valuable discussions on FD-TD,
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for reviewing Chapter 11, and for generating the numerical data used in several
illustrations in Chapter 11.

Finally, we recognize our wives, Claudia and Jo Ann, for enduring countless hours
of neglect during the preparation for both editions. The same recognition goes to
our children, Darren and Dana, and Eric, Scott, and Brad.

Warren L. Stutzman
Gary A, Thiele
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Chapter 1

Antenna Fundamentals
and Definitions

1.1 INTRODUCTION

Communication between humans was first by sound through voice. With the desire
for long distance communication came devices such as drums. Then, visual methods
such as signal flags and smoke signals were used. These optical communication
devices, of course, utilized the light portion of the electromagnetic spectrum. It has
been only very recent in human history that the electromagnetic spectrum, outside
the visible region, has been employed for communication, through the use of radio.

The radio antenna is an essential component in any radio system. An antenna is
a device that provides a means for radiating or receiving radio waves. In other
words, it provides a transition from a guided wave on a transmission line to a “free-
space” wave (and vice versa in the receiving case). Thus, information can be trans-
ferred between different locations without any intervening structures. The possible
frequencies of the electromagnetic waves carrying this information form the elec-
tromagnetic spectrum (the radio frequency bands are given in Appendix A). One
of humankind’s greatest natural resources is the electromagnetic spectrum and the
antenna has been instrumental in harnessing this resource. A brief history of an-
tenna technology [1-4] and a discussion of the uses of antennas follow.

Perhaps the first radiation experiment was performed in 1842 by Joseph Henry
of Princeton University, the inventor of wire telegraphy. He “threw a spark” in a
circuit in an upper room and observed that needles were magnetized by the current
in a receiving circuit located in the cellar. This experiment was extended to a dis-
tance of over a kilometer. Henry also detected lightning flashes with a vertical wire
on the roof of his house. These experiments marked the beginning of wire antennas.

Based on his observations in 1875 that telegraph key closures radiate, Thomas
Edison patented a communication system in 1885 that employed top-loaded, vertical
antennas.

The theoretical foundations for antennas rest on Maxwell’s equations, which
James Clerk Maxwell (1831-1879) presented before the Royal Society in 1864, that
unify electric and magnetic forces into a single theory of electromagnetism. Maxwell
also predicted that light is explained by electromagnetics and that light and electro-
magnetic disturbances both travel at the same speed.

In 1887 the German physicist Heinrich Hertz (1857-1894) was able to verify

1



2 Chapter 1 Antenna Fundamentals and Definitions

experimentally the claim of Maxwell that electromagnetic actions propagate
through air. Hertz discovered that electrical disturbances could be detected with a
single loop of the proper dimensions for resonance that contains an air gap for
sparks to occur. The primary source of electrical disturbances studied by Hertz
consisted of two metal plates in the same plane, each with a wire connected to an
induction coil; this early antenna is similar to the capacitor-plate dipole antenna
described in Section 2.1 and was called a *“Hertzian dipole.” Hertz also constructed
loop antennas. Motivated by the need for more directive radiation, he also invented
reflector antennas. In 1888 he constructed a parabolic cylinder reflector antenna
from a sheet of zing; see Fig. 1-1a. It was fed with a dipole along the focal line and
operated at 455 MHz.

Guglielmo Marconi (1874-1937), an Italian inventor, also built a microwave par-
abolic cylinder reflector in 1895 for his original code transmission at 1.2 GHz. But
his subsequent work was at lower frequencies for improved communication range.
The transmitting antenna for the first transatlantic radio communication in 1901
consisted of a 70-kHz spark transmitter connected between the ground and a system
of 50 wires, forming a 48-m tall fan monopole; see Fig. 1-1b. The antenna resembles
a variation of the discone antenna described in Sec. 6.3. The receiving antenna was
supported by kites.

Although Marconi is credited as the pioneer of radio, Mahlon Loomis (1826—
1886), a dentist and inventor in Washington, DC, received a U.S. patent in 1872 for
an “‘Improvement in Telegraphying’ in which he described the use of an “aerial”
to radiate and recieve ‘“‘pulsations.” In October 1866, Loomis demonstrated his
wireless signaling system to U.S. senators in the Blue Ridge Mountains of Virginia
using wire supported by kites at both the transmitting and receiving antennas about
twenty miles apart.

The Russian physicist Alexander Popov (1859-1905) also recognized the impor-
tance of Hertz’s discovery of radio waves and began working on ways of receiving

(«) The 455-MHz cylinder reflector antenna (b) The monopole transmitting antenna used by
invented by Hertz in 1888 Marconi at 70 kHz for the first transatlantic
radio communication

Figure 1-1 Examples of early antennas.
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them a year before Marconi. He is sometimes credited with using the first antenna
in the first radio system by sending a signal over a 3-mile ship-to-shore path in 1897.
However, it was Marconi who developed radio commercially and also pioneered
transoceanic radio communication. Marconi may be considered to be the father of
what was then called wireless. Since then the term ‘““radio’ has been used, but
“wireless’ has also returned to popular use.

In 1912 the Institute of Radio Engineers was formed by the merger of the Wireless
Institute and the Society of Radio Engineers. The importance of antennas is punc-
tuated by the fact that the first article of the first issue of Proceedings of the L.R.E.
was on antennas [5].

Antenna developments in the early years were limited by the availability of signal
generators. Resonant length antennas (e.g., a half-wavelength dipole) of manage-
able physical size were possible about 1920 after the De Forest triode tube was used
to produce continuous wave signals up to 1 MHz. Just before World War 11, micro-
wave (about 1 GHz) klystron and magnetron signal generators were developed
along with hollow pipe waveguides. These led to the development of horn antennas,
although Chunder Bose (1858-1937) in India produced the first electromagnetic
horn antenna many years earlier. The first commercial microwave radiotelephone
system in 1934 was operated between England and France at 1.8 GHz. The need
for radar during the war spawned many “modern’” antennas, such as large reflectors,
lenses, and waveguide slot arrays [6].

Let us now direct our attention to the uses of antennas. Electromagnetic energy
can be transported using a transmission line. Alternatively, no guiding structure is
needed if antennas are used. For a transmitter-receiver spacing of R, the power loss
of a transmission line is proportional to (¢~ **)?, where « is the attenuation constant
of the transmission line. If the antennas are used in a line of sight configuration, the
power loss is proportional to 1/R% Many factors enter into the decision of whether
to use transmission lines or antennas. Generally speaking, at low frequencies and
short distances transmission lines are practical. But high frequencies are attractive
because of the available bandwidth. As distances become large and frequency in-
creases, the signal losses and the costs of using transmission lines become large, and
thus the use of antennas is favored. A notable exception to this is the fiber optic
transmission line, which has very low loss. Transmission lines offer the advantages
of not being subject to interference that is often encountered in radio systems and
added bandwidth is achieved by laying new cable. However, there are significant
costs and construction delays associated with cable.

In several applications, antennas must be used. For example, mobile communi-
cations involving aircraft, spacecraft, ships, or land vehicles require antennas. An-
tennas are also popular in broadcast situations where one transmit terminal can
serve an unlimited number of receivers, which can be mobile (e.g., car radio). Non-
broadcast radio applications such as municipal radio (police, fire, rescue) and am-
ateur radio also require antennas. Also, personal communication devices such as
pagers and cellular telephones are commonplace.

There are also many noncommunication applications for antennas. These include
remote sensing and industrial applications. Remote sensing systems are either active
(e.g., radar) or passive (e.g., radiometry) and receive scattered energy or inherent
emissions from objects, respectively. The received signals are processed to infer
information about the objects or scenes. Industrial applications include cooking and
drying with microwaves.

Other factors that influence the choice of the type of transmission system include



