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INTRODUCTION. This book contains the texts of the lectures
given by the invited lecturers at the Conference on Complex Approxi-
mation held at Quebec on July 3-8, 1978. It contains also supplemen-
tary papers resulting from discussion which took place during this
meeting.

The three main subjects were: approximation in €" and function
algebras, analytic and harmonic approximation in , exponential ap-
proximation and approximation in LP.

We received substantial financial help from the National Re-
search Council of Canada and the Ministry of Education of the Province
of Quebec, and from Laval University.

In the name of all participants we sincerely thank these insti-

tutions for having made this successful meeting possible.

Bernard Aupetit



TABLE OF CONTENTS

Introduction

Invited Talks

H. Alexander: On the area of the spectrum of an element of

a uniform algebra.

B. Aupetit: Sous-harmonicité et algeébres de fonctions.

E. Bedford and J.-E. Fornaess: Approximation on pseudoconvex
domains.

J. Brennan: Point evaluations, approximation in the mean and
analytic continuation.

J. Chaumat: Quelques propriétés du prédual de H™.

A.-M. Chollet: Ensembles pics de Am(D).

W.H. Fuchs: On Chebychev approximation on several disjoint

intervals.

P. Gauthier: Uniform analytic approximation on unbounded sets

(texte non parvenu).

L.I. Hedberg: Approximation in LP by harmonic functions.

N. Kalton and L.A. Rubel: Gap interpolation theorems for

entire functions.

J.A. Siddiqi: L'approximation exponentielle dans @ (texte
non parvenu) .

E.L. Stout: Uniform approximation on certain unbounded sets
in ¢".

B. Weinstock: Uniform approximation on smooth polynomially

convex sets.

13

47
57
67

75

7T

80

83



viii

Supplementary Talks

- B. Aupetit: L'approximation entiére sur les arcs allant a 93

1'infini dans @".

- G.A. Harris: An algebraic question related to the function for 103

real submanifolds of C".

- S. Scheinberg: Approximation and non-approximation on Riemann 110

surfaces.



INVITED TALKS



TSN, FELAPDFIEE www. ertongbook. com



ON THE AREA OF THE SPECTRUM OF AN ELEMENT OF A UNIFORM ALGEBRA
by

H. Alexander

INTRODUCTION. In classical function theory, the area of the image
of a holomorphic function was usually computed with multiplicity. In [5],
Alexander, Taylor and Ullman obtained an estimate for the area, without
multiplicity, of the image of a function holomorphic in the uni- disc.
This had applications to function theory. Here we shall discuss an area
theorem in the context of uniform algebras where an estimate for the pla-
nar area of the spectrum of an element of the uniform algebra will be ob-
tained. The proof which we shall give will depend on a quantitative ver-
sion of the classical Hartogs-Rosenthal theorem on rational approximation
in the complex plane. Applied to certain polynomial algebras, this '"area
theorem" yields properties of analytic subvarieties of C". Hartogs' the-
orem, the separate analyticity implies analyticity, and an analogous re-
sult of Nishino, that separate normality implies normality, are conse-
quences.

To fix some notation, C(X) will denote the Banach algebra of all
continuous complex-valued functions on a compact Hausdorff space X, nor-
med with the supremum norm. When X is a compact subset of ¢ , C(X)
has subalgebras P(X) and R(X) which are the closures in C(X) of the po-
lynomials (in the coordinates) and the rational functions, holomorphic
on a neighborhood of X, respectively. The maximal ideal space of P(X)
can be identified with the polynomially convex hull i(z{pemn:lf(p)lslflx

for every polynomial f}) of X. Thus, for a polynomial f, the plane set



f(i) is the spectrum of f, considered as an element of the Banach alge-
bra P(X). It is this set whose area we shall estimate. For the funda-
mentals on uniform algebras and polynomial convexity we refer to the
books of Stout [11] ans Wermer [12].

AREA THEOREM. First recall the classical area formula. Let f be holo-

morphic in the open unit disc U with f(0) =0 and Taylor series £(z) =

= 3 anzn. Then, as a mapping from R? to 1R2?, the Jacobian determinant
ofnglis [£']2 and so the planar area of the image of f, counting multi-
plicity, 1is given by
[|£W2 dxdy=ﬂ§ |an|2 . (1)
il n=1

the integral being easily evaluated in polar coordinates. Now suppose
that f has L? boundary values, also denoted by f; i.e., take f to be in

the Hardy space H2.. Then, for the measure dm=7%-d9 on the unit circle

T,

[ie12an = T ja)2. &

n
n=1

T
The obvious estimate in (1) and (2) gives

area, with mult., of f(U)=n J|f|2dm. (3)

T

EXAMPLE: Take f(z) =z%. On the left side of (3) we have 57, the area,
with multiplicity, of the image of f, while the integral on the '"right
side of (3) equals =, which, in fact, is the area of the image of f
without counting multiplicity.

The estimate (3) will be generalized as follows:

area, without mult., of £(U)=zw f|f|2dm (4)

Observe that in the above example, (4) becomes an eqzality. The estimate
(4) was obtained by Alexander, Taylor and Ullman [5]. Here we shall
give a general version which is valid for uniform algebras; the following
proof (see [2] and [3] ) is not the original one of [5] .

Let A be a uniform algebra with maximal ideal space M, let x eM,

and let o be a (positive) representing for x supported on M. (In appli-



cations, we usually take o to live on the Shilov boundary.) Planar Le-
besque measure will be denoted be A below. We can now state the genera-
lization to the setting of uniform algebras of (4) which itself is the
special case of A the disc algebra, x the origin and ¢ the measure %?de.
THEOREM 1 [3]. Let feA and f(x) =0, then
x(f(M))zw[|f|2dc . (5)

REMARK : Since this requires the functions to be continuous on the maxi-
mal ideal space, one can apply the theorem on discs of radius less than
one and take a limit to get (4) form (5).

The proof will be based on the following quatitative form of the
Hartogs-Rosenthal theorem.
THEOREM [2]. Let K be a compact subset of the complex plane. Conside-
ring z as a function inm C(K), one has the following estimate for the

distance from z to the subset R(K) of C(K):

1/2
dist (3,R(K)) s(%) .

PROQF: Let y be a C” function with compact support in the plane such
that ¥(z) =z on a neighborhood of K. By the generalized Cauchy inte-

gral formula,

_1({{fay dudv B ) o
w(Z)~—;Hg-;- =z > L Eu+iv,

for all zeC. Restricting ¢ to K and using 3y/3z = 1 on K we get

= _ 4 dudv _ 1 9y dudv
=" 3 T -z T 3T -z
€

K

for z ¢ K. Since the second integral repiesents a function in R(K), we

have dudv

-z

dist(zZ,R(K))< sup |%
ist(z sup IIU (6)

By an elegant computation, Ahlfors and Beurling ([1] , p. 106-107)

have shown that the right side of (6) is dominated by (A(K)/m)1/2, g
REMARK: If A(K) = 0, Lemma 2 says that zeR(K). Then, by the Stone-
Weierstrass theorem, R(K) =C(K). This is the Hartogs-Rosenthal theorem.
PROOF OF THEOREM 1: Let >0 and put K=f(M). Use the lemma to ob-

tain a rational function r(z) with poles off K such that



=Gl e (PE)_% € ¥

Since r is is holomorphic on a neighborhood of the spectrum K of
f, it follows from the Gelfand theory that g =rofeA and |f—g1M<[(x(K)+
e)/ﬂ]% We have |f|?= f(f-g) +fg. Since geA, we get fgdo = f(x) x
g(x)=0 and so f|f|2do . [f(f—g)dc. Thus f]f|2das|?-g| | £]dos
[(A(K)+e)/7r]12 [lflda. Now letting e+0 yields

J|f|2dc < (Lff)fhf[dc 7

This is somewhat more general than (5) (and can be used to study
the case of equality in (5)). An application of Holder's inequality,
j&]dcs (ﬁflzda)%, in (7) gives (5).

Our first application is to the area of an analytic variety in c"
of complex dimension one -'" a Riemann surface with singularities".
l-varieties have a naturel Lebesque area when viewed as real two-dimen-
sional surfaces of IR?N=(C". In fact, if we put w = i/2 g dzkAazk,

k=1
then for any analytic l-variety V in Cn, we have

area (V)= ( w , (8)

\4
where the right side indicates integration of the real differential

2-form w over the real oriented 2-dimensional surface V. The verifica-
tion [7]1 of (8) amounts to two observations: (a) (8) is clearly valid
if V is linear space and (b)w is invariant under translations and uni-
tary transformations Now writing J 7 JI dz Adzk and observing

% k 1 th
that 2 dz adz = dx A dy for z =x +1y, we see that the k

term in this
sum is just the area of zk(V), counted with multiplicity, where zk(V)
is the planar image of V under the kth coordinate function Zq Thus,

for any 1l-variety V in En,

=}

area(V) = I [area, with mult., of zk(V)] (9)
k=1
Now suppose that V is a subvariety of a ball of radius R in C"
which passes through the center of the ball which we take to be the ori-

gin. Then it is known[10] that the area of V is bounded below and that



the extremal case occurs when V is a linear space; namely, area (V)=wR2.
In view of (9), the following estimate, first obtained in [5], genera-

lizes this.

n
r [area, without mult., of Zk(v)]ZWRZ. (10)
=]

k
We shall prove a version of this in the more general setting of
polynomial hulls.
THEOREM 3 [2]: Let Y be a compact subset of the sphere, centered at the
origin, of madiue R in t"and put X =;. Suppose that X contains the ori-

gin. Then

n
L Az, (X))z2 m™ R2 (11)

k=1

REMARK: To obtain (10), fix r <R and let Y be the intersection of V
with the sphere of radius r. Then X is the intersection of V with the
closed ball of radius r. Now apply (11) and let r +R. In the same way,
by invoking the local maximum modulus principle, one can improve (11) by
replacing X with X\Y.
PROOF: In Theorem 1 take A to be P(X) (with maximal ideal space X) and
X to be the origin. Let o be a representing measure for the origin
(0 € X) which has its support in Y. Then, as zkeP(X), we have
A(Zk(X))2WI|zk|2dc.
Summing over k gives
n n
by A(zk(X))sz{ £ |zk|2}dc.
. = k=1
But i [zk|25 R2 on Y and so (11) follows.[

For our second application of (5) we shall consider a one-dimen-
sional subvariety V of the unit polydisc U in €?. Let z and w be the
coordinate functions in C2.

THEOREM 4. Let p= (a,b) be a fizxed point of V. Suppose that there

exists a § > 0 such that |w| > 8§ on V. Then



Log T%T (1-|al)?

A(z(V))2 o (12)
tog (1)
§
REMARKS: While this estimate on the area of the z-projection of V is
not usually best possible, asymptotically this is the case when a =0
and |b|+ & ; for then both sides of (¥2) approach w. The "vertical" va-
riety z =a and its small pertubations, which have small projections in-
to the z-plan, are ruled out by the condition |w| >é on V.
Moreover, the strict positivity of & is needed to force a lower
bound on the area of z(V). Indeed, given 0<b<1 , one can construct
a subvariety V of U2 containing the point (0,b), on which w=0, and such
that z(V) has arbitrarily small area e¢. To obtain V, let K be a compact
subset of the unit disc U which is disjoint form the closed unit inter-
val [0,1]1 and such that the area of U\K is less than e¢. By Runge's
theorem, there exists a polynomial g such that |g-1|< 1/2 on K and
g(0) =Log b. Now put f=exp(g) and V={(z,f(z)): z ¢ U} nU2. Then
V is a l-subvariety of U?,(0,b)eV, w20 on V, and A(z(V))<e, because

[£(z)I1>/e for =z ek implies z(V)c U\K.

PROOF: Without loss of generality we may assume that V extends to be
a subvariety of a neighborhood of the closed unit polydisc; this is be-
cause we can work with small dilations of the original variety and take
a limit. This means that V nT2 is the maximal ideal space of the al-
gebra A = P(Vn0?) and that the Shilov boundary : of A is contained
in 3U%2. Let o be a Jensen measure supported on I which represents
the point p for the algebra A. Then, since the coordinate function

w 1is an invertible element of A, we have

log( 1 = J’ 10g( 1 ) do = J 1og(—1) do (13)
(bl Iwl {221} [wl

< 1og(%). ollzl =1}




