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Introduction

This text exposes the basic features ¢f cohomology of
sheaves and its applications. The general theory of sheaves is
very limited and no essential result is obtainable without turn-
ing to particular classes of topological spaces. The most satis-
factory general class is that of lccally compact spaces and it
is the study of such spaces which occupies the central part of
this text.

The fundamental concepts in the study of locally compact
spaces is cohomology with compact support and a particular class
of sheaves, the so-called soft sheaves. This class plays a double
role as the basic vehicle for the internal theory and is the key
to applications in analysis. The pasic example of a soft sheaf
is the sheaf of smooth functions on R" or more generally on any
smooth manifold. A rather large effort has been made to demon-

strate the relevance of sheaf theory in even the most elementary

analysis. This process has been reversed in order to base the

fundamental calculations in sheaf theory on elementary analysis.
The central theme of the text is Pcincaré duality or rather

its generalizations by Borel and Verdier. In its first form this

appears as a duality between cohomoleogy and cohomology with com-
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pact support. A more genergl Poincaré& duality thebry ié develop-
ed for a continuous map between locally compact spaces. The
important special cése of a closed imbedding admits generaliz-
ation to arbitrary topological spaces and is beé£ understood in
the framework of local cohomology. This theory is used for con-
struction of.charac;eristic classes of all sorts: Chern classes,
Stiefel—whitney.classes,

For further applications to algebraic topology,a homoliogy
theory is developed for locally compact spaces and proper maps,This
allows one to express Poincaré duality as an isomorphism between
homology and cohomology. Applications are given to the classical
theory of topological manifolds: fundamental class, diagonal
class, Lefschetz fixed point formula ...

This homology theory is particularly suited for the gtudy
of algebraic varieties and a detailed introduction to (co)homo-
logy classes of algebraic cycles is given, igbluding a topologi-
cal definition of the local intersection symbol. It is a rather
>-rem§rkable feature that this homology theory more or less auto-
matically grinds out algebraic cycles.

A word about homological algebra. The first chapter of the
text gives an introduction to homological algebra sufficient for
most of the text. The last chapter, or appendix if you wish,
gives an introduction to derived categories used in the more
advahced parts of the text and in the proofs of the basic cup
product-formulas. It is my hope that this will give some readers
motivation for Verdier's rather difficult text (1) on triangulated

categories.,
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1. Homological Algebra

1.1 _EBxact categories

Consider a category with zero object 0, that is for every
object A there is precisely one morphism A -+ 0 and precisely
one 0 - A .

A zero morphism A + B is one which can be factored
A-+0-+B . .

A kernel, Kerf \for # morphism £: A - B is a pair (K,i)
where i: K + A 1is a monomorphism with £1=0 and such that any morphism
g: X+ A with fg= 0 factors through i: K - A .

A cokernel, Cok £ for £ is a pair (C,p) - where

p: B+ C 1is an epimorphism with pf= 0 such that any morphism
h: B+ Y with hf= 0 factors through p.

We shall assume that every morphism has kernel and cokernel.

An image, Imf is a kernel for a cokernel.

A coimage, Coimf is a cokernel for a’ketnel.

- Bvery morphism f has a canonical factorization

, .
A -ocoimf£~ Imf - B



Definition 1.1. An exact category is a category with zero
N B F] )
objects, kernels, cokernels and such that Coimfio Imf always

is an isomorphism.

In the remaining part of this section we shall work in an

exact category.

Definition_1.2. A sequence of morphisms

n+1

= s

n-1 n
”'An-1 fﬁAn f_'An+1 f

is called exact if Im(f""') = Ker(f"), for all n.

.

Proposition 1.3. Consider the exact, commutative diagram

A— B —C —D

Pl

A'—sB'—C'— D!

1

0
The induced sequence Ker‘b -+ Kerc » Kerd is exact.

Proof. Break the diagram into two pieces

0 —-E —-C— D A—~B —3 —0
O T (O
0 — E'—— C'— D! A'— B'— E'— O
We have to prove that 0
a) 0 > Ker e~ Xer c» Kerad is exact

8) Kerb - Kere is surjective



a) Check that Xere- Kerc 1is a kernel for Kerc=- D.

B8.1) Check that cokb~+ Coke 1is an isomorphism (use the

dual statement to o , if necessary).
B8.2) The exaat commutative diagram

Al B' - E!' 0

| 1 !

0 —— Cokb — Coke —— 0

shows that - A' -» Imb>» Ime is exact: replace A' by a

kernel for B' -+ E' and use a).

g8.3) This’gives an exact commutative diagram

A — B —~~— E —— 0
b b e

Al Imb Ime 0
0 0 0

Check that e' 1is a cokernel for Kerb' - E.

The dual statement is Q.E.D.

Proposition 1.4. Consider the exact, commutative diagram

0

!
A B C D
la b be la
Al B' c' — D'

The induced sequence Co} » Cokb » Cckc is exact.



Corollary 1.5. Consider morphisms f£: X » Y and g: Y - 2.

The following sequence is exact
0 » Ker f »Ker gf »Kerg »Cok f »Cokgf -+ Cokg~ 0.

Proof. Apply 1.3 and 1.4 to the two diagrams

£
— Ker f — X Y Cok £

| N

0 Z — I — 0
|
0

O — O «——— O

Q.E.D.

Snake Lemma 1.6. Consider the exact commutative diagram

e

S O P

A' — B' ——+ (' —— D' ——y '

0
A————DB——OC;—-—.D.__—.E
E

There is an exact sequence

Ker b =»Ker c »Kerd -a>(:okb -+ Cokc =»Cokd.



More precisely

1) Put K = Ker(C+D'). K -» Kerd is an epimorphism.

~

2) Put K' = Cok(B~C'). Cokb- K' is a monomorphism.
3) There exists a unique map
3: Kerd~- Cokb

such that the two composites

K-C3cC' » K

K » Ker d E')»Cokb + K!
are the same.

4) The six~term sequence above is exact.

Proof. Let f denote the morphism C' - Ker(D'-E').

Consider the exact commutative diagram

C D E

A - B
| | e la e
0 — 0 —s Inf — pt ——— E°
J |
0 g.

It follows from 1.3 applied twice that
B - K — Kerd —= 0
{8 exact, and similar, that-

0 ~——s Cokb == K' e DI



is exact. This proves 1), 2), 3). By 1.3, 1.4 and duality it

suffices to prove that
Kerc -— Kerd — Cokb

is exact. It suffices to prove exactness of
Kerc -— Kerd — K?',

Consider the diagram

Kerd —— 0

o ! |

B
B c’ K' ————— 90
0

Conclusion by 1.3.

Q.E.D.

Let us record a much used special case

Eive lemma 1.7. Given an exact commutative diagram

A—> B~ C —+ D —s E !

NN

A'—s B'—s C'—s D'—u E!

If a,b,d,e are isomorphism, then ¢  is an isomorphism.
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I.2 Homology of complexes

We shall discuss the concept, homology in the framework of
an exact category. ‘
y o _ n n
By a complex we understand a sequence C = (C , 3 )nez of

objects and morphisms

n-1 n - S+
12 ch om0t

with a™13" - 0 for all n€Z. The 3's are callea differen-

tials or boundary operators.

n
(£ )nEZ

A morphism of complexes f: C'— D° is a sequence f =

of morphisms f": c"—D" with
13" - " for all nez.

For a complex C' we define for n€%Z the n'th homology object

2.1 g"(c*) = Ker a%/1m 37"

A morphism f: C°~—D° of complexes will induce a morphism on

homology

2.2 ‘ H(£) = H™(C") —H(D")

Consider a sequence of complexes

. £ R 0

0 ~——P

which is a chainwise exact, i.e. with

o rR" 0

exact for all n€z. We shall construct the so called connecting

morphism



2.3 M HMR) - #V )

and derive a long exact sequence

N +1
2.4 P 2@ A G gy Dot o BT 04 o)

*

Construction. For a comuwlex C°  we put

2.5 ™) = ker 20T, 1zh(ct) = Cok 377

The boundary ERIN L Cn+1 induces

. + .
a": "atict) - 2™ (e
As is easily seen we have an exact sequence

n+1

n
2.6 0 - BheY) -tz SV ey » E™ ey o0

We can now derive a commutative diagram

'Tn(P‘) ~-am'27Q%) —— "IN (RY) — 0
0 - zn+1(P.) s Z"+1(Q') _— Zn+1(a')

whose rows are egact as one ea<ily derives from 1.3 and 1.4. We
can now conclude the construction by appealing to the snake' lemma
1.6.

The connecting morphism 2.3 has the following functorial

property. Given

0 —p° Q° . 0
lu 1\; lw
0 ~—U" e V' s W' = 0

a2 commutative diagram of complexes whose rows are chainwise exact.



