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Prefacé

Historically, there is a close connection between geometry and optimization.
This is illustrated by methods like the gradient method and the simplex method,
which are associated with clear geometric pictures. In combirratorial optimization,
however, many of the strongest and most frequently used algorithms are based
on the discrete structure of the problems: the greedy algorithm, shortest path
and alternating path methods, branch-and-bound, etc. In the last several years
geometric methods, in particular polyhedral combinatorics, have played a more
and more profound role in combinatorial optimization as well.

Our book discusses two recent geometric algorithms that have turned out to
have particularly interesting consequences in combinatorial optimization, at least
from a theoretical point of view. These algorithms are able to utilize the rich
body of results in polyhedral combinatorics.

The first of these algorithms is the ellipsoid method, developed for nonlinear
programming by N. Z. Shor, D. B. Yudin, and A. S. Nemirovskii. It was a great
surprise when L. G. Khachiyan showed that this method can be adapted to solve
linear programs in polynomial time, thus solving an important open theoretical
problem. While the ellipsoid method has not proved to be competitive with the
simplex method in practice, it does have some features which make it particularly
suited for the purposes of combinatorial optimization.

The second algorithm we discuss finds its roots in the classical “geometry
of numbers”, developed by Minkowski. This method has had traditionally
deep applications in number theory, in particular in diophantine approximation.
Methods from the geometry of numbers were introduced in integer programming
by H. W. Lenstra. An important element of his technique, called basis reduction,
goes in fact back to Hermite. An efficient version of basis reduction yields a
polynomial time algorithm useful not only in combinatorial optimization, but
also in fields like number theory, algebra, and cryptography.

A combination of these two methods results in a powerful tool for combi-
natorial optimization. It yields a theoretical framework in which the polynomial
time solvability of a large number of combinatorial optimization problems can
be shown quite easily. It establishes the algorithmic equwalence of problems
which are “dual” in various senses.

Being' this general, this method cannot be expected to give running times
comparable with special-purpose algorithms. Our policy in this book is, therefore,
not to attempt to obtain the best possible running times; rather, it is to derive
just the polynomial time solvability of the problems as quickly and painlessly as
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possible. Thus, our results are best conceived as “almost pure” existence results
for polynomial time algorithms for certain problems and classes of problems.

Nevertheless, we could not get around quite a number of tedious technical
details. We did try to outline the essential ideas in certain sections, which should °
give an outline of the underlying geometric and combin®torial ideas. Those
sections which contain the technical details are marked by an asterisk in the list
of contents. We therefore recommend, for a first reading, to skip these sections.

The central result proved and applied in this book is, roughly, the following.
If K is a convex set, and if we can decide in polynomial time whether a given
vector belongs to K, then we can optimize any linear objective function over K
in polynomial time. This assertion is, however, not valid without a number of
conditions and restrictions, and even to state these we have to go through many
technical details. The most important of these is that the optimization can bé&
carried out in an approximate sense only (as small compensation, we only need-
to test for membership in K in an approximate sense).

Due to the rather wide spread of topics and methods treated in this book, it
seems worth while to outline its structure here.

Chapters 0 and 1 contain mathematical preliminaries. Of these, Chapter 1
discusses some non-standard material on the complexity of problems, efficiency
of algorithms and the notion of oracles.

The main result, and its many versions and ramifications, are obtained by
the ellipsoid method. Chapter 2 develops the framework necessary for the
formulation of algorithmic problems on convex sets and the design of algorithms
to solve these. A list of the main problems introduced in Chapter 2 can be found
on the inner side of the back cover. Chapter 3 contains the description of (two
versions of) the ellipsoid method. The statement of what exactly is achieved
by this method is rather complicated, and the applications and specializations
collected in Chapter 4 are, perhaps, more interesting. These range from the main
result mentioned above to results about computing the diameter, width, volume,
and other geometric parameters of convex sets. All these algorithms provide,
however, only approximations.

Polyhedra encountered in combinatorial optimization have, typically, vertices
with small integral entries and facets with small mtegraj coefficients. For such
polyhedra, the optimization problem (and many other aigorithmic problems) can
be solved in the exact sense, by rounding an approximate solution appropriately.
While for many applications a standard rounding to some number of digits is
sufficient, to obtain results in full generality we will have to use the sophisticated
rounding technique of diophantine approximation. The basis reduction algorithm
for lattices, which is the main ingredient of this technique, is treated in Chapter
5, along with several applications. Chapter 6 contains the main applications of
diophantine approximation techniques. Besides strong versions of the main result,
somewhat different combinations of the ellipsoid method with basis reduction give
the sirongly polynomial time solvability of several combinatorial optimization
problems, and the polynomial time solyability of integer linear programming in
fixed dimension, remarkable results of E. Tardos and H. W. Lenstra, respectively.
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Chapters 7 to 10 contain the applications of the results obtained in the
previous chapters to combinatorial optimization. Chapter 7 is an easy-to-read
introduction to these applications. In Chapter 8 we give an in-depth survey of
combinatorial optimization problems solvable in polynomial time with the meth-
ods of Chapter 6. Chapters 9 and 10 treat two specific areas where the ellipsoid
method has resolved important algorithmic questions that so far have resisted
direct combinatorial approaches: perfect graphs and submodular functions.

We are grateful to several colleagues for many discussions on the topic
and text of this book, in particular to Bob Bixby, Andras Frank, Michael
Jiinger, Gerhard Reinelt, Eva Tardos, Klaus Truemper, Yoshiko Wakabayashi,
and Zaw Win. We mention at this point that the technique of applying the
ellipsoid method to combinatorial optimization problems was also discovered by
R. M. Karp, C. H. Papadimitriou, M. W. Padberg, and M. R. Rao.

We have worked on this book over a long period at various institutions. We
acknowledge, in particular, the support of the joint research project of the German
Research Association (DFG) and the Hungarian Academy of Sciences (MTA),
the Universities of Amsterdam, Augsburg, Bonn, Szeged, and Tilburg, Cornell
University (Ithaca), Eotvos Lorand University (Budapest), and the Mathematical
Centre (Amsterdam).

Our special thanks are due to Frau Theodora Konnerth for the efficient and
careful typing and patient retyping of the text in TgX.

March 1987 Martin Grétschel
- Laszlé Lovasz
Alexander Schrijver
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Chapte°r 0

Mathematical Preliminaries

This chapter summarizes mathematical background material from linear algebra,
linear programming, and graph theory used in this book. We expect the reader
to be familiar with the concepts treated here. We do not recommend to go
thoroughiy through all the definitions and results listed in the sequel - they are
mainly meant for reference. '

0.1 Linear Algebra and Linear Programming

In this section we survey notions and well-known facts from linear algebra,
linear programming, polyhedral theory, and related fields that will be employed
frequently in subsequent chapters. We have also included a number of useful
inequalities and estimates. The material covered here is standard and can be
found in several textbooks. As references for linear algebra we mention FADDEEV
and FADDEEVA (1963), GANTMACHER (1959), LANCASTER and TISMENETSKY (1985),
MaRrcus and MINC (1964), STRANG (1980). For information on linear program-
ming and polyhedral theory see for instance CHVATAL (1983), DANTZIG (1963),
Gass (1984), GRUNBAUM (1967), ROCKAFELLAR (1970), SCHRIJVER (1986), STOER
and WiTzGaLL (1970).

Basic Notation

By R (@, Z, N, €) we denote the set of real (rational, integral, natural, complex)
numbers. The set IN of natural numbers does not contain zero. R, (@, Z;)
denotes the nonnegative real (rational, integral) numbers. For € N, the symbol
R" (@', Z", N", €") denotes the set of vectors with n components (or n-tuples
or n-vectors) with entries in R (@, Z, N, €). If E and R are sets, then RE is
the set of mappings of E to R. If E is finite, it is very convenient to consider-
the elements of R as |E|-vectors where each component of a vector x € RE is
indexed by an element of E, i. e, x = (X.)ecg. For F < E, the vector ¥ e RE
defined by yf =1ifeeF and yf =0if ee E\ F is called the incidence vector
of F. ‘

Addition of vectors and multiplication of vectors with scalars are as usual.
With these operations, IR" and @" are vector spaces over the fields R and
@, respectively, while Z" is a module over the ring Z. A vector is always
considered as a column vector, unless otherwise stated. The superscript “T”
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denotes transposition. So, for x e R", x” is a row vector, unless otherwise stated.
R" is endowed with a- (Euclidean) inner product defined as follows:

n

xTy = Zx,-y,- for x,y e R".

i=1

For a real number «, the symbol |a] denotes the largest integer not larger
than a (the floor ‘or lower integer part of «), [a] denotes the smallest integer not
smaller than a (the ceiling or upper integer part of @) and [«] := [¢ — 1] denotes

Z

the integer nearest to a. If a = (a;, ..., a,)" and b = (by, ..., b,)T are vectors,
we writea<bifa <bfori=1, .../ n

For two sets M and N, the expresston M < N means that M is a subset
of N, while M = N denotes strict containment, i. e, M < N and M # N. We
write M \ N for the set-theoretical difference {x e M | x ¢ N}, M AN for the
symmetric difference (M \ N) U (N \ M), and 2V for the set of all subsets of M,
the so-called power set of M. For M,N < R" and a € R, we use the following
standard terminology for set operations: M + N = {x+y | x e M,y e N},
oM ={ax|xeM},-M ={—x|xeM},M —N :=M + (—N).

Far any set R, R™" denotes the set of mxn-matrices with entries in R. For a
matrix A € R™", we usually assume that the row index set of A is {1, ..., m} and
_that the column index set is {1, ..., n}. Unless specified otherwise, the elements
or entries of 4 € R™" are denoted'by aj, 1 <i<m 1 <j<n; we write
A = (ajj). Vectors with n components are also considered as nx I-matrices.

if I is a subset of the row index set M of a matrix A and J a subset of the
column index set N of A4, then 4;; denotes the submatrix of A induced by those
rows and columns of A whose indices belong to I and J, respectively. Instead of
Apy (Apn tesp.) we frequently write A.; (A4;, resp.). A submatrix A of the form
Ajy is called a principal submatrix of 4. If K = {1, ..., k} then Agx is called
the k-th leading principal submatrix of A. A;. is the i-th row of A (so it is a row
vector), and A4 is the j-th column of A.

Whenever we do not explicitly state whether a number, vector, or matrix is
integral, rational, or complex it is implicitly assumed to be real. Moreover, we
often do not specify the dimensions of vectors and matrices explicitly. When
operating with them, we always assume that their dimensions are compatible.

The identity matrix is denoted by I or, if we want to stress its dimension,
by I,. The symbol O stands for any appropriately sized matrix which has all
entries equal to zero, and similarly for any zero vector. The symbol 1 denotes a
vector which has all components eque;] to one. The j-th unit vector in R", whose
j-th component is one while all other components are zero, is denoted by ¢;. If
x = (xy, ..., Xx»)7 is a vector then the nxn-matrix with the entries x;, ..., X, on
the main diagonal and zeros outside the main diagonal is denoted by diag(x).
If A € R™P and B € R™1 then (A4, B) (or just (A B) if this does not lead to
confusion) denotes the matrix in R™*®+9 whose first p columns are the columns
of A and whose other g columns are those of B.

The determinant of an nxn-matrix 4 is denoted by det(4). The trace of an
nxn-matrix A, denoted by tr(4), is the sum of the elements of the main diagonal
of the matrix A.
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When using functions like det, tr, or diag we often omit the brackets if there
is no danger of confusion, i. e., we frequently write det 4 instead of det(A4) etc.

The inverse matrix of an nxn-matrix A is denoted-by A~'. If a matrix has an
inverse matrix then it is called nonsingular, and otherwise singular. An nxn-matrix
A is nonsigular if and only if det 4 # 0.

Hulls, !ndependence, Dimension
A vector x € R" is called a linear combination of the vectors xy,x2,..., x;, € R"

if, for some 1 € Rk, X
X = Z Aixi.
i=1 .

If, in addition,

A>0 conic
' AT1=1 } wecall x a affine combination
120, A"1=1 convex
of the vectors xj,x,, ..., xx. These combinations are called proper if neither
A =0nor A =g for some j € {1,2, ..., kj, For a nonempty subset S = R", we
denote by .
lin(S) linear
Z(é_r:;()S ) the :omc.i hull of the elements of S,
conv(S) convex " e

that is, the set of all vectors that are linear (conic, affine, convex) combinations
of finitely many vectors of S. For the empty set, we define lin(@) := cone(@) := {0}
and aff(9) := conv(@) := 0.

A subset § = R" is called

a linear subspace S = lin(S)
a cone i S = cone(S)
an affine subspace = S = aff(s)
a convex set , S = conv(S)

A subset § < IR" is called linearly (affinely) independent if none of its members
is a proper linear (affine) combination of elements of S; otherwise S is called
linearly (affinely) dependent. It is well-known that a linearly (affinely) independent
subset of R" contains at most n elements (n + 1 elements). For any set § < R",
the rank of S (affine rank of S) denoted by rank(S) (arank(S)), is the cardinality
of the largést linearly (affinely) independent subset of S. For any subset S < R",
the dimension of S, denoted by dim(S), is the cardinality of a largest affinely
independent subset of S minus one, i. e, dim(S) = arank(S) — 1. A set S = R"
with dim(S) = n is called full-dimensional.

The rank of a matrix A (notation: rank(4)), is the rank of the set of its
column vectors. This is known to be equal to the rank of the set of its row -
vectors. An mxn-matrix A is said to have full row rank (full column rank) if
rank A = m (rank 4 = n).
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Eigenvalues, Positive Definite Matrices

If A is an nxn-matrix, then every complex number 4 with the property that there is
a nonzero vector u € €" such that Au = Au is called an eigenvalue of A. The vector
u is called an eigenvector of A associated with 1. The function f(4) := det(Al,—A)
is a polynomial of degree n, called the characteristic polynomial of A. Thus the
equation

det(Al,—A) =0

has n (complex) roots (multiple roots counted with their multiplicity). These roots
are the (not necessarily distinct) n eigenvalues of A.

We will often consider symmetric matrices (i. €., nxn-matrices A = (a;) with
aj = aj;, 1 <i<j <n). Itis easy to see that all eigenvalues of real symmetric
matrices are real numbers.

There are useful relations between the eigenvalues 4y, ..., 4, of a matrix A,
its determinant and its trace, namely

0.1.1) detd =[]

. i=1

0.1.2) trd = Z}..-.
i=1

An nxn-matrix A is called positive definite (positive semidefinite) if A4 is
symmetric and if x”Ax > 0 for all xe R"\ {0} (x"Ax >0 for all xe R"). If 4 is
positive definite then A4 is nonsingular and its inverse is also positive definite. In
fact, for a symmetric nxn-matrix A the following conditions are equivalent:

(0.1.3) . (i) A is positive definite.
(ii) A~!is positive definite.
(iii) All eigenvalues of A4 are positive real numbers.
(ivy A = BTB for some nonsingular matrix B.
(v) detA, >0 for k=1, ...,n, where A; is the k-th leading
principal submatrix of A. »

It is well known that for any positive definite matrix A4, there is exactly one
matrix among the matrices B satisfying (0.1.3) (iv) that is itself positive definite.
This matrix is called the (square) root of A and is denoted by A!/2.

Positive semidefinite matrices can be characterized in a similar way, namely,
for a symmetric nxn-matrix A the following conditions are equivalent:

0.1.4) (i) A is positive semidefinite.
(i) All eigenvalues of A are nonnegative real numbers.
(iii) A = BTB for some matrix B.
(iv) detA;; = 0 for all principal submatrices A;; of A.
(v) There is a positive definite principal submatrix 4;; of A
with |I| = rank A.
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" Vector Norms, Balls

A function N : R" — R is called a norm if the following three conditions are
satisfied:

(0.1.5) i N(x) =0 forxeR", N(x) =0 if and only if x = 0,
(i) N(ax) =|a|N(x) forall xe R", x e R,
(iii) N(x+y) <N(x)+N(y) for all x,y e R" (triangle inequality).

Every norm N on R” induces a distance dy defined by
dy(x,y) =N(x—y) forx,yeR".
For our purposes four norms will be especially important:
n 1/2 '
Ixll == VxTx = (z x,z) (the I;- or Euclidean norm).
i=1

(This norm induces the Euclidean distance d(x, y) = || x—y||. Usually, the Euclidean

norm is denoted by | - ||>. But we use it so often that we write simply | - |.)
n
x|y := le,-] (the /- or 1-norm),
i=1
[ x]loo ;= max |x;] (the l,- or maximum norm),
1<i<n
lxlla:= vVxTA~'x,

where A is a positive definite nxn-matrix. Recall that A induces an inner product
x"A"'y on R". Norms of type || - |4 are sometimes called general Euclidean or
ellipsoidal norms. We always consider the space R" as a Euclidean space endowed
with the Euclidean norm || - ||, unless otherwise specified. So all notions related
to distances and the like are defined via the Euclidean norm.

For all x € R", the following relations hold between the norms introduced
above:

(0.1.6) Ixll < lIxih < Vailx],
©.1.7) Ixlleo < Ixll < VAllX (o,

(0.1.8) Ixllo < lixlh < nlixle -

If A is a positive definite nxn-matrix with smallest eigenvalue A and largest
eigenvalue A then

(0.1.9) Valxll < lIxlle < VAlx]|  for all x e R™.



