2 il

R hit + FE

MGG R

2nd Edition

rs_o\

L AR A

China Machine Press

Principles of

Object-Oriented
Software Development

Anton Eliens

(SRIZhR - SB2hR)

fa7) Anton Eliéns 3

&
vy

EFMRRAFARE

(RIHR - SB2hR)

Principles of Object-Oriented
Software Development

nnnnnnnnnnnnnnnn

\\ll\\l\\\l\\\l\\ll\\lI\)\Il\\\l\l\\lI\\\\II\

Anton Eliéns: Principles of Object-Oriented Software Development, Second Edition
(ISBN: 0-201-39856-7).

Copyright © Addison Wesley 1994, Copyright © Pearson Education Limited 2000.

This edition of Principles of Object-Oriented Software Development, Second Edition is
published by arrangement with Pearson Education Limited. Licensed for sale in the mainland

territory of the People’s Republic of China only, excluding Hong Kong, Macau, and Taiwan.

A 53 SUHEMR i 3K EPearson Education 5 3 AR EE BULAR . A48 1H K& 45 18
VRIT, RAGLUE TR W alab & A AN

SR EIAR SRR R RGN XCHYE (AEEER. B AFlX).

RLETAT . AL

ZBENBIZE: AF. 01-2003-1014
EEEMMRE (CIP) HiE

T X QB IE R (BESCRE - 2R) / (fi7) 3L4E (Eligns, A.) %, ~dt5: HLR
ol i RE #E, 2003. 4

(2 siR /7))

154)3 Principles of Object-Oriented Software Development, Second Edition

ISBN 7-111-11907-X

I. @ 0.3 M. mEstRif

ol

-8 FE - #EL V.TP3IL. 52
o R R A -BIRCIPER L F (2003) 550238015

HUBE 1V lk tE R (Jesi R IS TR A B22 S iR 100037)
THEmE: iR

JEHREBENRIA RA SIENR - Fe BB RTHES
20034E4 H S5 1R 1 YR Eid il

787mm x 1092mm 1/16 - 33.5E13F

Eli%. 0001 - 3 000/

EM: 59.00 56 (HHLHL)

NEAS, mEET . BT, 80, mAR 78R

HhRE BYE

TEH MU, BOER KRR ZE LT RN FRME, R HREARBFHE
AVIEERS T WY HERIANES, BXEEGRERRRINA T2 ARE
HL O mSIAER . EELA RS, CEHNELR SHERBERREERES . HENERS
BT 28 1LE 3 B a5 bR B SE BT R, LT AR SR B E, ROURY THR
BTG, BRETHFROWE, BBBEEARAE, XAAFEME, HMEHFASREANR
HETI R

A, EERERARBNENT, RENITEL™ LARRE, MEEAAKTRA R
By, IMHENHERMHIRFERERILE, BREE,; ML LM OERIERFTEARLEE
M E, EREGBEARENERE. AMELARKVUHIRT ., XEFREERLE]I
HHLAY KR OJLHERBEN KB NAITSESHREZA. Wik, F0E R EMEFE T
BHLBM R R TEH TSN ZRERROEDEM, GRSt FER. BT AL OH
F-WRFHLRZH,

LB Tl i A4 B U BAERA AR P BN “HIREAHEERE . A19984H 4,
AR THELSRET#R, BFEHMMBEIM L., ZUILEHNTRE S, RIS
Prentice Hall, Addison-Wesley, McGraw-Hill, Morgan Kaufmann %t § ¥4 HiR 2> ld 7 R
HRSEXER, MNElTIA 95 E M3t B %4 Tanenbaum, Stroustrup, Kernighan, Jim
Gray % K Uii% R - - aiE &, UL HHERFEAS" BEHFHR, #EEE T, B8R MK
. KEBASUEMFE, BEERBRTXEN S VEAE,

R PREAS” MR TAESR TEHAFEE RS #8), HNREREAMRS 7 +H
Rk Btk S, AR ESS EHBT TR A R A T AE; W IR A/ B A ek S e b I
WG, ANEE I EBOT EAER. €4, “HREIBEAE" K2R FE a1t M,
XEBEALEPMY TREFMNOE, HBEITEERRANEIMMNSE BE, i L%
JTHRBITT BRI Rl

B FF BRI P 75 FIBOM R B B, BOF R I S LB i R RN
LA - ADHMB B, Rk, TGRS BEMG NE, £ EEHET HaRUMZT
WA R B : B BRI AR Z4b, MREDIR A SR,) S0 F B L
“HWIFRRCEET FIE, SIE2XHITHBCEH RN “Schaum’s Outlines” RF AW "X %
WA JIRR R, AT RIEX ZEAN BB, FRetR T S A ERMEMIIME . *
oA IE T REAER . IERRE. FERE HBRERY¥ . SHR¥E, EBOENY
BMEAY . BT K%, PEBE K¥ . SBRET RS, AYHEKY . PEHARKY | JLE
Mi7s MR R¥ . dUai R R | Al K% MACEE TR% . M KFE . BE ¥R, i

1

rJ \\)) ! |) ;12

IV

FAT R0 TN TE 02 Y N AR RLRE HUR 7E T BPL IG5 N UIBEI ¥ 4 E LK &
FIRF TR, HRATRMEES S WA R E

XA Bom 3 F AR M FAMEE M SR, A A B K LA
B ER ., HPiT 28 CAM. L T., Stanford, U.C. Berkeley, C. M. U. G {it & #/ %
ROEFERIN. AMUEE TRFRIT, BESH . RERS . B RGH . B R, St
BORME R, BRE . GERES M. B BECES IR AT B S s AR ARG R
MR —ANEAETRITEZ T ANAZ =LA . g gt Rmiln
B SR . X S GE HA 2 RIERIE 512 T . B ¥ 7R BHLRL 2 iy Bb i 0
A4

BB ER | WM. —RAFE . MENER. KRN RE, XU AR MR
B TR BRARIE, ARMNGBERBERERX, MRBMERLERKIERX -5 DA
WH W, B IRR BREATN ISR F 698 . 48020 o] XK 0 ik 2 6F JATH T AR
HWE A TR, RITMBRAEN DT

M4 ;. hzedu@hzbook.com
BERAHE: (010) 68995264

EXAMAL: ERAT X E TEEELS
S 4 7 . 100037

ERIESERS

(Fok RE BT)

 H RS Y X £ A

2 E 3 FFWE FaYT WAF
i R K &L e R
ok € EoE S EWA SONS

R IR EHR EEL
= 2 8 A2 B 5% A=
3

Foreword

What an unusual book! I have certainly seen many books on object-oriented soft-
ware development and even some that have similar coverage, but Anton Eliéns’s
book is in a different category entirely. As so many books in our field, this
one has also had its roots in the development of lecture notes. However, Eliéns
took a surprising deviation from the established path of developing notes into
books. Instead of inflating the notes, reorganizing the material, and creating the
traditional textbook, Eliéns decided to keep the essence of his notes alive.

By condensing the key points into ”slides” and keeping these slides as visual
anchors all over his text, the reader’s experience is truly different. There is a
fast track where we just follow the slides: this is what students to with hand-
outs on first encounter. Then there are the deeper modes of reading where we
focus in and follow Eliéns’s full-text explanations; explanations that are thorough
enough where that is important and shallow enough where overwhelming detail
wouldn’t pay back. Reading through this book and working with it to enhance
our understanding is a pleasure.

For a breakdown of the book’s structure, 1 refer to the preface and the foreword
to the first edition. However, it is worth noting that Eliéns has improved his text
substantially over the first edition. A theme close to my heart has been woven into
the text: components. Software architecture, a closely related theme of quickly
growing importance, has also found coverage.

The style and didactic quality of the presentation are matched by a wide-
ranging selection of topics. Living in times of rapid change and extremely broad
diversification of our discipline, we have to value the few books that span signif-
icant ranges in an integrative fashion. After all, it is the reader’s key challenge
to use books like Eliéns’s to reconstruct and integrate the vast sea of knowledge
fragments out there; and it is with the help of books like Eliéns’s that the reader
has a chance of achieving this formidable goal. Instructors and lecturers will
equally appreciate this book as readily usable for teaching and lecturing tasks.

In the end, for the software developer to be, as well as for the established
software developer or the computer scientist with an eye on software development,
there is a lot to know from a spectrum of subdisciplines, before we can feel even
half-confident about what we are actually doing when developing software. To get
there, we need to understand everything from modeling and design techniques,
over architecture and components, to implementation detail expressed in specific
programming languages. This book is a good starting point for doing so from

VI Foreword

an object-oriented perspective. (Keep your eyes open for other perspectives and
approaches, though!)

Clemens Szyperski
Novernber 1999

Foreword to the first edition

This book is an important contribution to object-oriented literature, bridging
the gap between the language and software engineering communities. It covers
language design issues relating to inheritance, types, polymorphism, and active
objects as well as software design paradigms such as the object modeling technique
(OMT), the model-view-controller paradigm (MVC) and responsibility-driven
design. Its four-part subdivision of the subject matter into design, languages
and systems, foundations, and application frameworks nicely balances practice
and theory, covering both practical design techniques and foundational models.
Its use of C++ as the primary application language, with Smalltalk and Eiffel as
additional languages, allows the book to be used in courses with programming
assignments in mainstream object-oriented languages.

The overall sense of balance and perspective is matched by an engaging style
and a modern treatment of an exceptionally broad range of topics in the body of
the book. The conceptually challenging questions at the end of each chapter (with
answers in an appendix) are sometimes humorous. For example, the question
‘Why do you need friends?’, which invites the reader to examine the value of this
C++ language construct, is nicely answered by pointing out tradeoffs between
efficiency and safety, ending with the admonition ‘treat friends with care’.

Object-oriented programming started as a language framework for single-
user systems, but is maturing into a technology for heterogeneous, distributed
network systems that focus on interoperability and glue for the composition of
heterogeneous modules. The notion of structure in object-oriented programming
is analogous to, but more complex than, the structure of structured programming.
This book reflects the maturation process from single-user to distributed systems
technology and provides a bridge from object-oriented concepts of single-user
programming to distributed software design concepts.

Basic object-oriented concepts are introduced from the viewpoint of design,
thereby motivating language concepts by their role in the software life cycle.
The first four chapters provide a gentle introduction to fundamental concepts
that yields unexpected insights for the seasoned reader. Chapter 1 examines
paradigms of programming and provides a distinctive object-oriented view of
the software life cycle, while chapter 2 presents C++, examines its benefits and
pitfalls, and compares it to Smalltalk and Eiffel. Chapter 3 on object-oriented
design includes an insightful discussion of models, contracts, and specifications
that provides a comparative overview and synthesis of alternative approaches to

X Foreword to the first edition

the conceptual foundations of design. Chapter 4 rounds out the section on design
with a discussion of testing and metrics for software validation that provides a
practical counterpoint to the conceptual focus of earlier chapters.

The topics in the first four chapters are well chosen to provide a foundation
for later topics. The chapter on language design principles includes an up-to-
date review of models of inheritance and delegation, the chapter on concur-
rency examines inheritance anomalies, concurrent object models, and principles
of distributed programming, while the chapter on composition and collaboration
explains callbacks, window management, and event-driven computation. The
three chapters on foundations examine, in a substantive but relaxed way, algebraic
models for abstract data types, calculi for type polymorphism, and behavioral
refinement through subtyping. The two final chapters provide an account of
interoperability, standards, library design, requirements engineering, hypermedia
links, and heterogeneous systems.

This book covers an unusually broad range of topics in an eminently read-
able fashion and is unique in its balance between theory and practice and its
multifaceted approach. Anton Eliéns demonstrates an up-to-date mastery of the
literature and the rare ability to compare, evaluate, and synthesize the work of
different software research and development communities. He is to be commended
on his skill and versatility in weaving a sequential expository thread through a
heterogeneous, distributed domain of subject matter.

Peter Wegner
October 1994

Preface

This is a book about object-oriented software development. It reflects the contents
of an upper-level undergraduate course on Object-Oriented Programming, given
at the Vrije Universiteit Amsterdam.

This was the beginning of the preface of the first edition. It still holds true.
However, OO is a rapidly evolving field. As a consequence my book, published in
1994, may have been considered to be outdated from the start. As an example,
right after its publication, patterns came into the focus of public interest. As
another example, think of the Java wave that has come over us. Clearly, a revised
edition was needed in which those subjects, and other subjects, are covered, or,
as in the case of CORBA, are covered in more detail.

Another reason is that the field of OO itself has matured considerably. The
acceptance of UML as a modeling standard is one example. The increased utiliza-
tion of CORBA for business-critical applications is another sign that (distributed)
object technology is being considered as sufficiently robust.

The availability of new topics in itself is not enough to justify a second edition,
since new books have been published in which these topics are covered. You only
have to think of the enormous number of books on Java. ... A revised second edition
of the book is justified however, in my opinion, since the book distinguishes itself
from the competition by its approach. Set up as a series of lectures, organized
around so-called slides, the book covers a large number of topics, some in depth,
some more casually. From an educational point of view, the advantage of this
approach is the direct availability of educational material, including the slides to
be presented in classroom. For the average reader, moreover, the slides provide
an overview which facilitates comprehension and recall.

Finally, another more personal reason for bringing out a revised edition is that
both in research and teaching my experience with OO has become more extensive,
and I may even dare say that my own thoughts about OO have matured to some
extent. In particular, in my group we have developed a multi-paradigm OO
framework, which was already introduced in chapter 12 of the first edition, that
has been applied in, for example, business process reengineering and collective
improvisation on the Web. Although I do not plan to treat any of this material
extensively, it does provide a basis for the examples and, moreover, the material

(including articles, software and examples) will be available on the accompanying
CDROM.

XI1

Preface

Features of this book

The book provides an introduction to object-oriented programming, cover-
ing design, languages, and foundational issues. It pays attention to issues
such as reuse, component technology, design patterns and in particular the
application of object technology in Web applications.

It contains guidelines for developing object-oriented applications. Apart
from practical examples it provides an overview of development methods as
well as an introduction to UML, the standard for object-oriented modeling.
In particular design patterns will act as a recurrent theme, or rather as a
perspective from which examples and solutions will be discussed.

Distributed object technology will be a major theme. The book provides an
introduction to CORBA that allows the student to gain hands-on experience
with developing CORBA applications. It also provides a discussion of
competing technologies, and in particular it will elucidate the distinction

between component technology and distributed objects. Examples in Java
and C++ will be included.

Another major theme of the book is to establish precisely the relation
between the guidelines and prescriptions emerging from software engineering
practice on the one hand, and the constraints and insights originating from
theoretical research. In the book attention will be paid to foundational
issues as well as the pragmatical solutions the designers of object-oriented
languages have chosen to realize their ideas.

Many of the notions introduced and problems discussed are clarified by
short programs, mostly in Java, some in C++. The examples cover GUI
development, business process reengineering and Web applications. No
extensive knowledge of the programming languages used is required since
a brief tutorial on a number of object-oriented programming languages,
including C++, Smalltalk, Eiffel and Java, is given in the appendix.

The material is organized around slides. The slides occur in the text in
reduced format, but are also available in Powerpoint and Netscape Presen-
tation format. Each slide captures some important notion or concept which
is explained and commented upon in the accompanying text. An online
Instructor’s Guide is available that provides hints for presenting the slides
and answers to the questions posed at the end of each chapter.

The entire book, including the software from the examples and the Instruc-
tor’s Guide is available electronically, on the accompanying CDROM as well
as on the Internet. The electronic version contains links to other material on
the Internet. The electronic version may be accessed also in slide mode that
allows for presenting the material in a classroom equipped with a beamer.

Preface XIII

Intended readers The book will primarily address an academic audience, or IT
professionals with an academic interest. Nevertheless, since I am getting more
and more involved in joint research with business partners and the development
of extra-academic curricula, examples are included that are of more relevance
to IT in business. In particular, it contains a section on the deployment of
(object-oriented) simulation for business process redesign, and a section on the
3D visualisation of business data using object technology.

This book may be used as the primary text for a course on OO or indepen-

dently as study or reference material. It may be used by the following categories
of readers:

e students — as a textbook or as supplementary reading for research or project
papers.

e software engineers — as (another) text on object-oriented software develop-
ment.

e professional teachers — as ready-made material for a course on object-oriented
software development.

Naturally, this is not meant to exclude other readers. For instance, researchers
may find the book useful for its treatment of foundational issues. Programmers
may benefit from the hints and example programs in Java and C++. Another
reason for using this book may be its compact representation of already familiar
material and the references to other (often research) literature.

The book is meant to be self-contained. As prior knowledge, however, a general
background in computer science (that is, computer languages and data structures
as a minimum) is required. To fully understand the sections that deal with
foundational issues or formal aspects, the reader must also have some knowledge
of elementary mathematical logic.

Organization The book is divided into four parts. Each part presents the issues
involved in object-oriented programming from a different perspective, which may
be characterized respectively as software engineering and design, languages and

system development, abstract data types and polymorphism, and applications and
Jrameworks.

Part I: Designing Object-Oriented Systems

1. Introduction: This chapter gives an introduction to the area of object-oriented
software development. It gives a global view on the object-oriented life cycle and
discusses object orientation as a paradigm of programming. It discusses a number
of trends and technologies that have come into the focus of public attention and
indicates their relevance to ‘object-orientation’.

X1V Preface

2. Idioms and patterns*: This chapter introduces idioms and design paiterns as
means to capture recurrent structures and solutions in object-oriented program-
ming. It distinguishes between idioms as solutions tied to a particular language
and patterns which are the product of rational design. This chapter contains
numerous examples, in Java.

3. Software engineering perspectives: This chapter discusses the process of soft-
ware development and the various modeling perspectives involved in analysis and
design. It explains the issues involved in arriving at a proper object model and
introduces the notion of contract as an instrument to capture the relationships
between object classes. In addition, it proposes a method for validation and
testing based on contracts.

4. Application development*: In this chapter we develop a complete application
and discuss the issues involved in its design and realization. It presents guidelines
for (individual) class design, and gives an example of how to denve an implemen-
tation from a formal specification.

Part I1I: Object-Oriented Languages and Systems

5. Object-oriented languages: This chapter provides a comparison between object-
oriented languages, including Smalltalk, Eiffel, C++ and Java. It further discusses
a number of alternative languages, included Self and Javascript, each with their
own object model, and treats issues such as dynamic inheritance by delegation.
synchronous active objects, and meta-level architectures for class-based languages.

6. Component technology* This chapter discusses the relation between compo-
nent technology and distributed object technology, and will give a brief overview of
the solutions that are available on the market, including Microsoft COM/ActiveX,
JavaBeans, Java RMI and CORBA. It also presents a simple workgroup applica-
tion and an example of integrating CORBA with an existing software library.

7. Software architecture*: In this chapter we explore how software architecture
affects design and implementation. It treats design patterns for distributed object
systems, and looks at the technical issues involved in developing multi-lingual

systems. As an example we show how to employ the native interface to embed an
existing framework in Java.

Part III: Foundations of Object-Oriented Modeling

8. Abstract data types: This chapter considers the notion of abstract data types
from the perspective of types as constraints. It presents an algebraic approach in
which objects may be characterized as algebras. Further, it explains the difference
between the classical approach of realizing abstract data types in procedural
languages and the realization of abstract data types in object-oriented languages.
The implications of a more pragmatic conception of types is also discussed.

Preface XV

9. Polymorphism: This chapter discusses inheritance from a declarative per-
spective, and gives a precise characterization of the subtype relation. It further
discusses the various flavors of polymorphism and presents a type theoretical
treatment of genericity and overloading. Also, type calculi that capture data
hiding and self-reference are given. These insights are related to the realization
of polymorphism in Eiffel, C++ and Java.

10. Behavioral refinemment: This chapter extends the notion of types as con-
straints to include behavioral properties. It presents an assertion logic for the
verification of programs and discusses the operational model underlying the ver-
ification of object behavior based on traces. It further gives precise guidelines
to determine whether classes that are syntactical subtypes satisfy the behavioral
refinement relation. Finally, an overview is given of formal approaches to charac-
terize the behavior of collections of objects.

Part IV: Object-Oriented Application Frameworks

11. Business process redesign*: In this chapter we look at the opportunities
IT offers in (re)designing business processes. In particular, we look at (object-
oriented) simulation as a means to capture the logistical aspects involved in
business process modeling, and in addition we look at how simulation models

can be made available as to allow decision making, by deploying visualisation and
dissemination over the Web.

12. Web applications*: In this chapter we look at how object technology may be
applied to the Web. We will look both at client-side extensions and server-side
solutions. In particular, we look at systems that employ CORBA in addition to
other Web technologies. We also briefly look at another new trend in computing,

intelligent, mobile agents, and we argue that agents are a direct derivation from
object technology.

Appendices The appendices contain brief tutorials on Smalltalk, Eiffel, C++,
Java and the distributed logic programming language DLP. They also contain
an overview of UML, an overview of CORBA IDL, a tutorial on programming

CORBA applications with Orbacus, and suggestions for small and medium-term
projects.

Tracks For those developing a course on object-oriented programming, the book
offers a choice between various tracks, for which the ingredients are sketched

below. Also, an indication is given of the sections that contain more advanced
material.

XVI Preface

regular extended advanced
programming 2,4,5,12 | 6,11 7,8
software engineering | 1, 3, 4, 11 | 8.1-2,10.1 | 9.1-3, 10.2
theoretical 1, 3,8 5, 9.1-4 9.5-6, 10

The programming track, comnsisting of chapters 2, 4, 5 and 12, may be aug-
mented with material from the appendices and chapters 6 and 11. The software
engineering track, consisting of chapters 1, 3, 4 and 11, may be augmented with
material from the theoretical track as indicated. The theoretical track, consisting
of chapters 8, 9 and 10, may need to be augmented with more general information
concerning OOP provided in the other tracks.

Differences with respect to the first edition For clarity I have marked the
chapters that have been substantially changed with an asterisks.

Adding new topics is one thing, eliminating parts of the book, naturally, is
quite another thing. Yet I have chosen to remove the chapters on C++ (pre-
viously chapter 2), software engineering issues (chapter 4), concurrency in C++
(chapter 6), composition mechanisms (chapter 7), software libraries (chapter 11)
and hypermedia (chapter 12). Some of this material, for example parts of the
hypermedia chapter (12), composition mechanisms (7), and software engineering
issues (4), will reappear elsewhere. Nevertheless, since some of it is obsolete, and
other material does not function well in classroom, it is better to remove it, and
allow its space to be taken by other topics.

Background and motivations My own interest in object-oriented languages
and software development stems from my research on the language DLP, a lan-
guage integrating logic programming with object-oriented features and parallelism
(Eliéns, 1992). When looking for material for a course on object-oriented program-
ming, I could not find a book that paid sufficient attention to foundational and
formal aspects. Most of the books were written from a perspective on OOP that
did not quite suit my purposes. What I was looking for could to some extent
only be found in research papers. As a consequence, I organized my OOP course
around a small number of papers, selecting the papers that, to my mind, can
be considered as landmark papers, papers that have become known as originally
presenting some significant notion or insight. The apparent disadvantage of basing
a course on OOP on papers is the obvious lack of a unified view, and of a consistent
use of terminology. The advantage of such an approach, however, is that students
are encouraged to assess the contribution of each paper and to form their own
view by comparing critically the different viewpoints expressed in the papers.
Personally, I favor the use of original papers, since these somehow show more
clearly how the ideas put forward originated. Later, more polished, renderings of
these same ideas often lack this quality of ‘discovery’.

The idea of organizing a book around slides came quite naturally, as the
result of structuring the growing collection of slides, and the wish to maintain
the compact representation offered by the slides.

Preface XVII

The choice of material reflects my personal preference for foundational issues,
in other words, papers that are focused on concepts rather than (mal)practice.
The choice of material has also been colored by my interest in (distributed)
hypermedia systems, the Web and, to some extent, by my previous work on
distributed logic programming. Although the book is certainly not focused on
language constructs, modeling issues as well as foundational issues are generally
related to existing or conceivable language constructs, and (whenever possible)
illustrated by working examples developed for that purpose.

The choice for Java as the main vehicle for presenting the program fragments
and examples is motivated simply by the popularity of Java. The presentation
of some of the other examples in C++ reflects my belief that C++ must still be
considered as a valid programming language for object-oriented software develop-
ment. However, I also believe that in the (near) future multi-paradigm approaches
(extending Java and C++) will play a significant role.

The approach taken in this book may be characterized as abstract, in the
sense that attention is paid primarily to concepts rather than particular details
of a solution or implementation language. By chance, in response to a discussion
in my class, I looked up the meaning of abstract in a dictionary, where to my
surprise I learned that one of its meanings is to steal, to take away dishonestly.
Jokingly, I remarked that this meaning sheds a different light on the notion of
abstract data types, but at a deeper level I recognized the extent to which the ideas
presented in this book have profited from the ideas originally developed by others.
My rendering of these ideas in a more abstract form is, however, not meant to
appropriate them in a dishonest way, but rather to give these ideas the credit they
deserve by fitting them in a context, a framework encompassing both theoretical
and pragmatical aspects of object-oriented computing. As one of the meanings
of the adjective abstract, the dictionary also lists the word abstruse (not easy to
understand). There is no need to say that, within the limits of my capabilities, I
have tried to avoid becoming abstruse.

Finally, in presenting the material, I have tried to retain a sufficient degree of
objectivity. Nevertheless, whenever personal judgments have slipped in, they are
meant rather to provoke a discussion than provide a final answer.

Information The electronic version can be found at
http://www.cs.vu.nl/~eliens/online /oo

For any questions or comments you may contact the author at eliens@cs.vu.nl
by electronic mail, or at Dr A. Eliéns, Vrije Universiteit, Faculty of Sciences,

Division of Mathematics and Computer Science, De Boelelaan 1081, 1081 HV
Amsterdam, The Netherlands.

Contents of the CDROM The CDROM contains a complete online version
of the book, including additional lectures, software and links to resources on the
Internet. This online version may be used for presentation in the classroom, using
the Netscape Presentation Format, which is supported by Netscape Navigator 4.x
or better and by Internet Explorer 4.x or better. For each chapter, the CDROM

