Jd 11 1328
-
1 1]

o .-

'

-

 AndreaBacciotti
~ Lionel Rosier

e

Liapunov Functions
and Stability
in Control Theory

2nd Edition

@ Springer



Andrea Bacciotti and Lionel Rosic¢

Liapunov Functions
and Stability
in Control Theory

2" Edition

With 20 Figures

@_ Springer



Andrea Bacciotti, Prof. Dr.
Politecnico Torino, Dipto. Matematica, Corso Duca Degli Abruzzi 24,
10129 Torino, Italy

Lionel Rosier, Prof.

Institut Elie Cartan

Université Nancy 1

B.P. 239

54506 Vandoeuvre-lés-Nancy Cedex, France

Series Editors
E.D.Sontag - M.Thoma - A.Isidori - J.H.van Schuppen

Originally published as volume 267 in the series “Lecture Notes in Control and Information Sciences.”
Springer London (2001)

ISSN 0178-5354

ISBN 10 3-540-21332-5 Springer Berlin Heidelberg New York
ISBN 13 978-3-540-21332-1 Springer Berlin Heidelberg New York

Library of Congress Control Number: 2005921904

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in other ways, and storage in data banks. Duplication of this publication or
parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag,. Violations
are liable to prosecution under German Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2005

Printed in The Netherlands

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

Typesetting: Data conversion by author.

Final processing: PTP-Berlin Protago-TgX-Production GmbH, Germany
Cover-Design: PTP-Berlin Protago-TgX-Production GmbH, Germany
Printed on acid-free paper 89/3141/Yu-543210



Communications and Control Engineering




Published titles include:

Randomized Algorithms for Analysis and Control of Uncertain Systems
Roberto Tempo, Giuseppe Calafiore and Fabrizio Dabbene

Stability and Stabilization of Infinite Dimensional Systems with Applications
Zheng-Hua Luo, Bao-Zhu Guo and Omer Morgul

Nonsmooth Mechanics (Second edition)
Bernard Brogliato

Nonlinear Control Systems 11
Alberto Isidori

L,-Gain and Passivity Techniques in nonlinear Control
Arjan van der Schaft

Control of Linear Systems with Regulation and Input Constraints
Ali Saberi, Anton A. Stoorvogel and Peddapullaiah Sannuti

Robust and Heo Control
Ben M, Chen

Computer Controlled Systems
Efim N. Rosenwasser and Bernhard P. Lampe

Dissipative Systems Analysis and Control
Rogelio Lozano, Bernard Brogliato, Olav Egeland and Bernhard Maschke

Control of Complex and Uncertain Systems
Stanislav V. Emelyanov and Sergey K. Korovin

Robust Control Design Using Heo Methods
Ian R. Petersen, Valery A. Ugrinovski and Andrey V. Savkin

Model Reduction for Control System Design
Goro Obinata and Brian D.O. Anderson

Control Theory for Linear Systems
Harry L. Trentelman, Anton Stoorvogel and Malo Hautus

Functional Adaptive Control
Simon G. Fabri and Visakan Kadirkamanathan

Positive 1D and 2D Systems
Tadeusz Kaczorek

Identification and Control Using Volterra Models
EJ. Doyle 11, R.K. Pearson and B.A. Ogunnaike

Non-linear Control for Underactuated Mechanical Systems
Isabelle Fantoni and Rogelio Lozano

Robust Control (Second edition)
Jiirgen Ackermann

Flow Control by Feedback
Ole Morten Aamo and Miroslav Krstiz

Learning and Generalization (Second edition)
Mathukumalli Vi ar

Constrained Control and Estimation
Graham C. Goodwin, Marfa M. Seron and José A. De Dond

Randomized Algorithms for Analysis and Control of Uncertain Systems
Roberto Tempo, Giuseppe Calafiore and Fabrizio Dabbene

Switched Linear Systems
Zhendong Sun and Shuzhi S. Ge



Preface

We are interested in mathematical models of input systems, described by
continuous-time, finite dimensional ordinary differential equations

z = f(t,z,u) 1)
where t > 0, z = (x1,...,7,) € R™ represents the state variables, u =
(u1,...,um) € R™ represents the input variables and f = (f1,...,fn) :
[0,+00) x R™ x R™ — R™. Together with (1), we will often consider the

unforced associated system

= f(t,z,0) . (2)

Basically, (2) accounts for the “internal” behavior of the system. More
precisely, (2) describes the natural dynamics of (1) when no energy is supplied
through the input channels. The analysis of the “external” behavior is rather
concerned with the effect of the inputs (disturbances or exogenous signals) on
the evolution of the state response of (1).

Physical systems are usually expected to exhibit a “stable” behavior. A
primary aim of this book is to survey some possible mathematical definitions
of internal and external stability in a nonlinear context and to discuss their
characterizations in the framework of the Liapunov functions method.

We will also consider the problem of achieving a more desirable stability
behavior (both from the internal and the external point of view) by means of
properly designed feedback laws. To this end, it is convenient to think of the
input as a sum u = 4 + u.. The term u, represents external forces, while
uc is actually available for control action. Roughly speaking, (1) is said to
be “stabilizable” if there exists a map u. = k(¢,z) such that the closed loop

system

z = f(t,z,k(t, ) + ue) (3)

exhibits improved (internal and/or external) stability performances.
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Intimate relationships among all these aspects of systems analysis emerge
with some evidences from classical linear systems theory. In particular, as
we shall see at the beginning of Chapter 2, the external behavior of a linear
system is strongly related to its internal structure. On the contrary, dealing
with nonlinear systems these connections become weaker and need a more
delicate treatment.

We shall see in particular that the approach to stability and stabilizabil-
ity of nonlinear systems rests much more heavily on the method of Liapunov
functions. Thus, we are led to emphasize the interest in a variety of theorems
which state, under minimal assumptions, the existence of Liapunov functions
with suitable properties. These theorems are usually called “converse Liapunov
theorems”. A secondary aim of this book is to illustrate the state of the art on
this subject, and to present some recent developments.

We have not yet specified what kind of assumptions should be made about
the map f which appears at the right hand side of (1) and about the admissible
inputs.

The class of admissible inputs should be so large to include representations
of all signals commonly used in engineering applications. To this purpose, it
is well known that in certain circumstances, a discontinuous function often is
more suited than a continuous one. Thus, throughout these notes, we shall
adopt the following agreement:

(I) the class of admissible inputs is constituted by all measurable, essentially
bounded functions u : [0, +00) — R™.

To establish the assumptions about f is a more delicate task. In a classi-
cal “smooth” setting, it seems natural to ask that f is time invariant, namely
f(t,xz,u) = f(z,u), and at least continuous as a function of z,u, though addi-
tional regularity could be required for certain purposes!. This is actually the
point of view we intend to adopt at the beginning but, as long as we proceed in
our exposition, it will become clear that the smooth setting is too conservative
for certain developments. This occurs in particular when we seek Liapunov
functions of (Liapunov or Lagrange) stable systems or when we aim to de-
sign internally asymptotically stabilizing feedback laws. Indeed, the solution of

1Recent results of the so-called geometric control theory apply to systems whose right
hand side can be represented as a family of C™ or real analytic vector fields (see [79], [80],

(155)).
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these problems cannot be found in general within a pre-assigned class of time
invariant smooth functions, unless severe restrictions are made on the system
under consideration. We will be so led to introduce in our treatment nondif-
ferentiable functions and differential equations with discontinuous right hand
side.

We remark that differential equations with discontinuous right hand side
arise in many engineering and physical applications. Historically, one of the
main motivation was the study of the motion of a body with one degree of
freedom subject to an elastic force, in presence of both viscous and dry friction
([58], [54]). This is modelled by the second order equation

Z+kr+bt+asgni=0

or, equivalently, by the two dimensional system

(52" @

y=—kx—by—asgny

(here, k,b and a are positive constants). For y # 0, the motion is correctly
represented by the solutions of the system. But if the body reaches a position
(z,0) with —% < z < ¢, our intuition suggests that the elastic force is too
weak. It cannot overcome the dry friction, and the body remains at rest. This
intuition is easily confirmed by physical observation, but it is not reflected by
system (4), at least as far as the solutions are intended in the usunal sense.

Differential equations with discontinuous right hand side play an important
role also in wariable structure control methodologies. Consider, for simplicity,

a time-invariant system

z = flz,u) .

In variable structure control theory, the goal is to track a path lying on
a hypersurface 3 defined by an equation s(z) = 0, where s(z) is a smooth
function. To this purpose, it is often convenient to use discontinuous feedback,

say for instance

if s(z) >0

1
":k(x)z{—l if s(z) <0 .

Clearly, the closed loop system

& = f(z, k(z))
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turns out to be discontinuous even if f(z, ) is a smooth function. The desired
motion is given by a trajectory sliding on ¥; in general, it is not a solution in
the usual sense of the closed loop system.

We finally remark that discontinuities of the velocity and sometimes also
of the state evolution are a typical feature of the so-called hybrid dynamical
systems: the book [152] provides a nice introduction on this subject, with
many practical examples (manual transmission, temperature control, electric
circuits with diodes, and many others).

These remarks point out that the treatment of differential equations with
discontinuous right hand side requires a generalization of the classical notion
of solution.

To be prepared for this extension, in Chapter 1 we recall some preliminary
material about existence of solutions for ordinary differential equations and
differential inclusions.

The main subject will be addressed starting from Chapter 2. As already
mentioned, in Chapter 2 we focus more precisely on the case where the right
hand side of (1) is time invariant and continuous with respect to both z,u. The
reason why we prefer to begin with such a restricted class of systems is twofold.
First, the more general approach could be felt at that point unmotivated and
too abstract. Second, the main notions, methods and achievements available in
the literature about stability and stabilizability theory of control systems have
been mostly obtained, in the last few years, just for this class of systems. Of
course, the choice of proceeding from the simplest situation to the more general
one, implies also a few of complications (for instance, the need of a progressive
updating of definitions and results when we shall undertake certain extensions)
but gives a clearer perspective of problems and theoretical difficulties.

A first attempt to re-interpret our problems in a more general context is
made in Chapter 3, where we consider time varying systems. We focus in
particular on possible notions of internal stability and on their relationships.
Although we are able to give some more precise results about existence of
Liapunov functions and of stabilizing feedback, we shall see that the picture of
the situation is not yet completely satisfactory.

The goal of replacing the classical smooth setting by a more general time
dependent and “nonsmooth” one, will be fully pursued in Chapter 4, where
we finally consider systems of the general form (1), and f is allowed to be
discontinuous with respect to z. More precisely, in Chapter 4 we discuss direct
and converse theorems about stability and asymptotic stability, together with
their applications to external stabilization. We present also a new approach
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which allows us to prove in a unified manner several recent results. The proof
given here is considerably shorter and easier than other proofs available in the
original papers.

Certain additional properties of Liapunov functions will be discussed in
Chapter 5. Here, we consider again the case of systems of ordinary differential
equations, with time invariant and smooth right hand side. The topics include
existence of analytic or homogeneous Liapunov functions and their symmetries,
and relationship between Liapunov functions and decay of trajectories.

Finally, in Chapter 6 we review some tools from nonsmooth analysis which
can be useful in the investigation of nondifferentiable systems with discontinu-
ous Liapunov functions.
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Chapter 1

Differential equations

In what follows, N, Z, Q, R represent respectively the sets of natural, integer,
rational and real numbers. Sometimes, we may use also the notation Rt =
[0,4+00) and N* = N\ {0}.

Let N € N*. The norm of a vector v = (vy,...,vn) € R is denoted by
l|v||]. As is well known, for finite dimensional vector spaces all the norms are
equivalent. Actually, the choice of the norm does not matter in the first three
chapters. However, in view of the developments of Chapter 4, it is convenient
to take the sup-norm

[|v|]] = max{|v;] : 1 < i < N} .

The Hausdorff distance between nonempty, compact subsets of RY will be
denoted by h. We recall that

h(A, B) = max{sup dist (a, B), sup dist (b, A)}
a€A beB
where dist (a, B) = infpe g ||a — b]|-

For x € RN and r > 0, the open ball of center z and radius r is denoted by

B(z)={yeR": |ly-zl| <r}.

Of course, B,.(z) denotes the closed ball. When z = 0, we shall write simply
B, instead of B,(0). We shall also use the symbol B” for the complement of a
closed ball, namely

B ={yeR": |ly]| >r} =RN\B, .
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Finally, let g : @ —» RM, where Q C R¥. The function g is said to be locally
Lipschitz continuous on Q if for each T € {2 there exist positive real numbers
L, 6 such that

z',2" € Bs(2) N = [lg(z') — g(z")|| < Lllz’ — ="]] .

1.1 Recall about existence results

The first natural question about a system of the form (1) concerns of course the
existence of (local) solutions corresponding to any admissible input. Through-
out this chapter we assume that u(t) is fixed, so that we can adopt the simplified
notation f(t,z) = f(t,z,u(t)). We are therefore led to consider a system of
ordinary differential equations of the form

&= f(t,z) (1.1)

where f(t,z) is defined for all z € R™ and t > 0. As is well known, Peano’s
Theorem states that if f(t,z) is continuous on [0,+00) x R™, then for each
initial pair (tg,zo) € [0,400) x R™ there exists at least one local classical
solution z(t) : I — R™ such that z(ty) = zo. Here, I is an interval of real
numbers such that to € I C [0, +00). The qualifier “classical” emphasizes that
z(t) is of class C! and

#(t) = f(t,2(t)) Viel.

The continuity assumption required by Peano’s Theorem is too restrictive
for applications to control theory. Indeed, in general admissible inputs are
assumed to be only measurable and essentially bounded. Therefore, even if the
right hand side of (1) is continuous, we cannot hope that the resulting map
ft,z) = f(t,z,u(t)) is continuous.

The following set of assumptions for (1.1) seems to be more appropriate:
(A1) the function f(¢,z) is locally essentially bounded on [0, +00) x R™
(Az) for each z € R", the function ¢t — f(¢,z) is measurable

(Aj3) for a.e. t > 0, the function = — f(t,z) is continuous.

A function z(t) is called a local Carathéodory solution of (1.1) on the interval
I if it is absolutely continuous on every compact subinterval of I and satisfies
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z(t) = f(t,z(t)) ae tel.

Carathéodory’s Theorem states that if assumptions (A1), (A2), (A3) are
fulfilled, then for each initial pair (fo, zo) € [0, +00) x R™ there exists an interval
I with ¢y € I and a Carathéodory solution z(t) defined on I.

For a system of the form (1.1), the set of all local Carathéodory solutions
corresponding to a given initial pair (to,xo) will be denoted by Sy, o, When
we need to emphasize the dependence of a particular solution z(t) € 8, », on
the initial time and state, we shall use the notation z(t) = z(¢; to, zo).

Moreover, when (1.1) results from an input system like (0.1) and we want
to emphasize the dependence of solutions on the input u(t), we shall write
respectively Sy, z0.u() and z(t) = x(t; 2o, zo, u(-)).

Remark 1.1 Of course, any classical solution is also a Carathéodory solution.
To show that the converse is false, consider the following simple one-dimensional
equation
z = f(t,z) = a(t)z

where

0 ifte

ay={7 1Y
1 ifteR\Q .
For each initial pair (0,z) with zo # 0, the set of classical solutions is

empty, but there is a Carathéodory solution of the form z = e'zy. [ ]

Peano’s and Carathéodory’s Theorems only guarantee in general the ex-
istence of local solutions. A typical additional assumption is local Lipschitz
continuity with respect to x:

(A4) for each point (f,%) € [0, +00) x R™ there exist § > 0 and a positive
function I(t) : [0, +00) — R such that {(t) is locally integrable and

1£(t,2) = £, =) < 1B)ll=" — ="
for each ¢, 2z’ and z” such that |t —¢| < 4, ||z’ — Z|| < § and ||z — Z|| < 6.
Under the assumptions (A;), (Az), (A3) and (Ay), it is possible to prove

local uniqueness and continuity of solutions with respect to the initial data. In
particular, the following holds.
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(C) let {,%) € [0,+00) X R™ be fixed, and assume that z(¢;t, Z) is defined on
some closed interval [a, 8] (with @ <t < ). Then for each € > 0 there
exists § > 0 such that for each pair (7, £) with

Ir—t <6, [l€-zll<é

the solution z(t; 7,€) is defined for @ <t < 8 and

lz(t;,8) — x(t;t,2)|| <e
for each t € [a, 3]

These and other results about ordinary differential equations can be found
in many usual textbooks (see for instance [125], [70], [60]).

1.2 Differential inclusions

In this section we illustrate how differential inclusions arise in the mathematical
theory of control systems. Moreover, we recall the main existence results needed
in the following chapters. In particular, we show that the existence of Filippov
solutions for discontinuous differential equations can be actually deduced from

an existence theorem for differential inclusions.

1.2.1 The upper semi-continuous case

As already mentioned in the Introduction, for certain applications of control
theory we need to resort to differential equations whose right hand side is dis-
continuous not only with respect to ¢, but also with respect to the state variable
z. Indeed, even if the system is modeled by smooth vector fields, discontinuities
may be inevitably introduced when closed loop solutions of certain problems
are required.

Note that if the right hand side of (1.1) is not continuous with respect to z,
then the usual notions of solution (classical or Carathéodory) do not apply. The
more common way to overcome the difficulty is to replace (1.1) by a differential

inclusion of the form

z € F(t,z). (1.2)

A solution of (1.2) is any function z(t) defined on some interval I C [0, +00)
which is absolutely continuous on each compact subinterval of I and such that



