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Notation

Particular notation used is collected at the start of the index; some general
notation is described here.

o]

0 0 0 O

(o]

O O O ©

N, Z, Z,, Q, R, C denote the natural numbers, integers, non-negative
integers, rational numbers, real numbers, and complex numbers, respec-
tively;

Qp, Z,, C, denote the p-adic rationals, the p-adic integers, and the com-
pletion of the algebraic closure of Qp, respectively;

ord, z is the p-adic order of z € Cy;

P is the set of prime numbers;

R is a commutative ring with 1;

F, is a field with ¢ = p" elements, p € P, r € N, and Fy is its multiplicative
group;

F,, p € P is identified with the set {0,1,... ,p— 1}

given a field F, F denotes the algebraic closure of F; thus @ is the field of
all algebraic numbers;

for any ring R, R[X], R(X), R[[X]], R((X)) denote the ring of polyno-
mials, the field of rational functions, the ring of formal power series, and
the field of formal Laurent series over R, respectively;

Zx denotes the ring of integers of the algebraic number field K;

H(f) denotes the naive height of f € Z[z,,...,Zn], that is, the greatest
absolute value of its coefficients;

ged(ay, - .. ,ax) and lem(ay, . . . , ax) respectively denote the greatest com-
mon divisor and the least common multiple of ai,... ,ar (which may be
integers, ideals, polynomials, and so forth);

¢ denotes any fixed positive number (for example, the implied constants
in the symbol O may depend on ¢);

d;; denotes Kronecker’s é-function: d;; = 1if i = j, and é;; = 0 otherwise;
u(k), p(k), T(k), o(k) respectively denote the Mdbius function, the Euler
function, the number of integer positive divisors of k, and the sum of the
integer positive divisors of k, where k is some non-zero integer;

v(k), P(k), Q(k) respectively are the number of distinct prime divisors of
k, the greatest prime divisor of k, and the product of the prime divisors
of k; thus, for example: ¥(12) = 2, P(12) = 3, and Q(12) = 6;

for a rational r = k/¢ with ged(k,£) = 1, P(r) = max{P(k), P(¢{)} and
Q(r) = max{Q(k), Q(O)};

m(z) is the number of prime numbers not exceeding z;

| X | denotes the cardinality of the set X;

log z = logs z, Inz = log, z;

Logz =logz if £ > 2, and Logx = 1 otherwise;
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NOTATION

a constant is effective if it can be computed in a finite number of steps
from starting data;

C(A1,A2,... ) or ¢(A1, Ag, ... ) denotes a constant depending on the param-
eters A1, Ag,.... Such constants may be supposed to be effective, unless
it is pointed out explicitly that they are not;

a statement S(z) is true for almost all z € N if the statement holds for
N+o(N) valuesof £ < N, N — oo. Similarly, a statement S(p) is true for
almost all p € P if it holds for m{N) + o(n(N)) values of p < N, N — o0;
the symbol O denotes the end of a proof.



Introduction

The importance of recurrence sequences hardly needs to be explained. Their
study is plainly of intrinsic interest and has been a central part of number theory
for many years. Moreover, these sequences appear almost everywhere in mathe-
matics and computer science. For example, the theory of power series representing
rational functions [1026}, pseudo-random number generators ([935], [936], [938],
[1277]), k-regular [76] and automatic sequences (736], and cellular automata [780].
Sequences of solutions of classes of interesting Diophantine equations form linear
recurrence sequences — see [1175], [1181], [1285], [1286]. A great variety of power
series, for example zeta-functions of algebraic varieties over finite fields [725], dy-
namical zeta functions of many dynamical systems [135], [537], [776], generating
functions coming from group theory [1110], [1111], Hilbert series in commutative
algebra [788], Poincaré series [131], [287], [1110] and the like — are all known
to be rational in many interesting cases. The coefficients of the series representing
such functions are linear recurrence sequences, so many powerful results from the
present study may be applied. Linear recurrence sequences even participated in
the proof of Hilbert’s Tenth Problem over Z ([786], [1319], [1320]). In the pro-
ceedings [289], the problem is resolved for many other rings. The article [998] by
Pheidas suggests using the arithmetic of bilinear recurrence sequences to settle the
still open rational case.

Recurrence sequences also appear in many parts of the mathematical sciences in
the wide sense (which includes applied mathematics and applied computer science).
For example, many systems of orthogonal polynomials, including the Tchebychev
polynomials and their finite field analogues, the Dickson polynomials, satisfy recur-
rence relations. Linear recurrence sequences are also of importance in approxima-
tion theory and cryptography and they have arisen in computer graphics [799] and
time series analysis [136].

We survey a selection of number-theoretic properties of linear recurrence se-
quences together with their direct generalizations. These include non-linear re-
currence sequences and exponential polynomials. Applications are described to
motivate the material and to show how some of the problems arise. In many sec-
tions we concentrate on particular properties of linear recurrence sequences which
are important for a variety of applications. Where we are able, we try to consider
properties that are particularly instructive in suggesting directions for future study.

Several surveys of properties of linear recurrence sequences have been given
recently; see, for example, [215], [725, Chap. 8], [822], [827], [899], [914], [1026],
(1181], (1202], [1248], [1285], [1286]. However, they do not cover as wide a range
of important features and applications as we attempt here. We have relied on these
surveys & great deal, and with them in mind, try to use the ‘covering radius 1’
principle: For every result not proved here, either a direct reference or a pointer to
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x INTRODUCTION

an easily available survey in which it can be found is given. For all results, we try
to recall the original version, some essential intermediate improvements, and — up
to the authors’ limited knowledge — the best current form of the result.

Details of the scope of this book are clear from the table of contents. In Chap-
ters 1 to 8, general results concerning linear recurrence sequences are presented.
The topics include various estimates for the number of solutions of equations, in-
equalities and congruences involving linear recurrence sequences. Also, there are
estimates for exponential sums involving linear recurrence sequences as well as
results on the behaviour of arithmetic functions on values of linear recurrence se-
quences. In Chapters 9 to 14, a selection of applications are given, together with
a study of some special sequences. In some cases, applications require only the
straightforward use of results from the earlier chapters. In other cases the tech-
nique, or even just the spirit, of the results are used. It seems almost magical that,
in many applications, linear recurrence sequences show up from several quite unre-
lated directions. A chapter on elliptic divisibility sequences is included to point out
the beginning of an area of development analogous to linear recurrence sequences,
but with interesting geometric and Diophantine methods coming to the fore. A
chapter is also included to highlight an emerging overlap between combinatorial
dynamics and the theory of linear recurrence sequences.

Although objects are considered over different rings, the emphasis is on the
conventional case of the integers. A linear recurrence sequence over the integers
can often be considered as the trace of an exponential function over an algebraic
number field. The coordinates of matrix exponential functions satisfy linear recur-
rence relations. Such examples suggest that a single exponential only seems to be
less general than a linear recurrence sequence. Of course that is not quite true, but
in many important cases links between linear recurrence sequences and exponen-
tial functions in algebraic extensions really do play a crucial role. Michalev and
Nechaev [827] give a survey of possible extensions of the theory of linear recurrence
sequences to a wide class of rings and modules.

For previously known results, complete proofs are generally not given unless
they are very short or illuminating. The underlying ideas and connections with
other results are discussed briefly. Filling the gaps in these arguments may be
considered a useful (substantial) exercise. Several of the results are new; for these
complete proofs are given.

‘Some number-theoretic and algebraic background is assumed. In the text, we
try to motivate the use of deeper results. A brief survey of the background material
follows. First, some basic results from the theory of finite fields and from algebraic
number theory will be used. These can be found in (725] and [909], respectively.
Also standard results on the distribution of prime numbers, in particular the Prime
Number Theorem n(z) ~ z/Inz, will be used. All such results can easily be found
in [1049), and in many other textbooks. Much stronger results are known, though
these subtleties will not matter here. The following well-known consequences of the
Prime Number Theorem,

k > p(k) > k/Loglogk, v(k) < Logk/Loglogk

and
P(k) > v(k) Logv(k),  Q(k) > exp ((1+ o(1))u(k))

will also be needed.
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A second tool is p-adic analysis [29], (131], [620]; in particular Strassmann’s
Theorem [1261], sometimes called the p-adic Weierstrass Preparation Theorem.
Section 1.2 provides a basic introduction to this beautiful theory. At several points
in the text, results about recurrence sequences will be given where the most natural
proofs seem to come from p-adic analysis. We can offer no explanation for this
phenomenon. For example, in Section 1.2, we give a simple proof of a special
case of the Hadamard quotient problem using p-adic analysis. The general case
has now been resolved and the methods are still basically p-adic. Similarly, when
it is applicable, p-adic analysis produces very good estimates for the number of
solutions of equations; compare the estimate of [1123] based on new results on
S-unit equations with that of [1038] obtained by the p-adic method. On the other
hand, a disadvantage of this approach is its apparent non-effectiveness in estimating
the size of solutions.

The simple observation that any field of zero characteristic over which a linear
recurrence sequence is defined may be assumed to be finitely generated over Q will
be used repeatedly. Indeed, it is enough to consider the field obtained from Q by
adjoining the initial values and the coefficients of the characteristic polynomial.
Then, using specialization arguments [1026] and [1037], we may restrict ourselves
to studying sequences over an algebraic extension of Q, or even just over Qp,
using a nice idea of Cassels [213]. Cassels shows that given any field F, finitely
generated over Q, and any finite subset M € F, there exist infinitely many rational
primes p such that there is an embedding ¢ : F — Q,, with ord, ¢(u) = 0 for all
B € M. A critical feature is that the embedding is into Q,, rather than a ‘brute
force’ embedding into an algebraic extension of Q,. The upshot is that for many
natural problems over general fields of zero characteristic, one can expect to get
results that are not worse than the corresponding one in the algebraic number field
case, or even for the case of rational numbers. Moreover, there are a number of
examples in the case of function fields where even stronger results can be obtained,
see [128], [160], [167], [171], [548], [781], [871] [920], [1002], [1041], [1162],
[1308], [1309], [1324], [1373].

Thirdly, many results depend on bounds for linear forms in the logarithms of
algebraic numbers. Section 1.3 gives an indication of the connection between the
theory of linear recurrence sequences and linear forms in logarithms by consider-
ing the apparently simple question: How quickly does a linear recurrence sequence
grow? After the first results of Baker [50], [51], [52], 53], [54], [55], and their p-
adic generalizations, for example those of van der Poorten [1017], a vast number of
further results, generalizations and improvements have been obtained; appropriate
references can be found in [1324]. For our purposes, the modern sharper bounds
do not imply any essentially stronger results than those relying on [55] and [1017].
In certain cases more recent results do allow the removal of some logarithmic terms;
[1369] is an example. We mostly content ourselves with consequences of the rela-
tively old results. ‘

Fourthly and finally, several results on growth rate estimates or zero multi-
plicity are based upon properties of sums of S-units. Specifically, linear recurrence
sequences provide a special case of S-unit sums. Section 1.5 gives a basic account of
the way results about sums of S-units can be applied to linear recurrence sequences.
This does not do justice to the full range of applicability of results about sums of
S-units — applications will reverberate throughout the text.
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In surveys such as this, it is conventional to attach a list of open questions.
Rather than doing this, the best current results known to the authors are pre-
sented; if a generalization is straightforward and can be done in the framework of
the same arguments that is noted. Other generalizations or improvements should
be considered implicit research problems. We do however mention attempts at
improvements which seem hopeless in the light of today’s knowledge.

Finally, we add several words about what we do not deal with. First, it is strik-
ing to note that the binary recurrence u(n+2) = u(n+1)+u(n), one of the simplest
linear recurrences whose solutions are not geometric progressions, has been a sub-
ject of mathematical scrutiny certainly since the publication of Leonardo of Pisa’s
Liber abaci in 1202 [1212]. Indeed, this recurrence has an entire journal devoted to
it [113). This volume is more egalitarian; with a few exceptions, no special prop-
erties of individual recurrences will be discussed. Several specific sequences arise
as examples; the most important of these are listed with their identifying numbers
in Sloane’s Online Encyclopedia of Integer Sequences [1222] in an Appendix on
page 254.

Second, one could write an enormous book devoted to one particular case of
linear recurrence sequences — polynomials. We do not deal with polynomials per
se; extensive treatments are in [1116) and [1120]. Nonetheless, this case alone
justifies the great interest in general linear recurrence sequences. Therefore, we
give several applications to polynomials but such applications are obtained using
partially hidden — although not too deep — links between polynomials and linear
Tecurrence sequences.

Third, a huge book could be written dealing with exponential polynomials as
examples of entire functions and therefore, ultimately, with analytic properties of
those functions. We barely consider any analytical features of exponential poly-
nomials, though we mention some relevant results about the distribution of their
zeros. We do not deal with analytical properties of iteration of polynomial map-
pings. Thus the general field of complex dynamics, and the celebrated Mandelbrot
set, is outside our scope. (Recall that the Mandelbrot set is the set of points c € C
for which the sequence of polynomial iterations z(k) = 2(k — 1)2 + ¢, 2(0} = 0, is
bounded; for details we refer to [154].) However, in Chapter 3 we do consider some
simple periodic properties of this and more general mappings.

Fourth, as we mentioned, general statements about the behaviour — both
Archimedean and non-Archimedean — of sums of S-units lie in the background
of important results on linear recurrence sequences. Nonetheless, we do not deal
with sums of S-units or their applications systematically. On the topic generally,
we first recommend the pioneering papers [376] and [1037] which appeared inde-
pendently and contemporaneously (the latter as a preprint [1019] of Macquarie
University in 1982). We point particularly to the book [1181] and the excellent
survey papers [378], (380], [381], [382], [503], [1128], [1175], [1285], [1286].

On the other hand, we do present some less well-known results about finitely
generated groups, such as estimates of the size of their reduction modulo an integer
ideal in an algebraic number field, and on the testing of multiplicative independence
of their generators. When results on S-unit sums are applied to linear recurrence
sequences, an induction argument usually allows the conditions on non-vanishing
proper sub-sums to be eliminated (such conditions are unavoidable in the general
study of S-unit sums).
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Despite the large number of references, no systematic attempt has been made
to trace the history of major results that have influenced the subject. No single
book on the history of this huge topic could hope to be definitive. However —
Leonardo of Pisa notwithstanding — it is reasonable to view the modern study of
the arithmetic of recurrence sequences as having been given essential impetus by
the remarkable work of Francois Edouard Anatole Lucas (1842-1891); many of the
themes developed in this book originate in his papers (see (283] and [1354] for
some background on his life and work, and [517] for a full list of his publications
and some of his unpublished work).

The bibliography reflects the interests and biases of the authors, and some of
the entries are to preliminary works. The authors extend their thanks to the many
workers whose contributions have given them so much pleasure and extend their
apologies to those whose contributions have not been cited. The authors also thank
many people for help with corrections and references, particularly Christian Ballot,
Daniel Berend, Keith Briggs, Sheena Brook, Susan Everest, Robert Laxton, Pieter
Moree, Patrick Moss, Wladystaw Narkiewicz, James Propp, Michael Somos, Shaun
Stevens, Zhi-Wei Sun and Alan Ward.

Alf van der Poorten & Igor Shparlinski Graham Everest & Thomas Ward

Centre for Number Theory Research School of Mathematics
Macquarie University University of East Anglia
Sydney Norwich
alfOmath.mq.edu.au g.everestQuea.ac.uk
igor@comp.mq.edu.au t.wardQuea.ac.uk
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CHAPTER 1

Definitions and Techniques

Our study begins with the basic properties of recurrence sequences, and the
particular properties of linear recurrence sequences. The collection of all linear
recurrences associated to a given polynomial is introduced, and a group structure on
this collection described. The far-reaching description of linear recurrence sequences
as generalized power sums is given, and some deeper topics like non-degeneracy and
the problem of characterizing those subsequences of a linear recurrence sequence
that are also linear recurrence sequences are mentioned.

The elementary observation that the formal power series associated to a se-
quence is rational if and only if the sequence is a linear recurrence sequence is
made, and related to other problems like characterizing the Taylor expansions of
solutions of linear ordinary differential equations. The problem of recognizing ratio-
nality in a power series is discussed, and basic tools from p-adic analysis introduced
to give a proof of a simple case of the Hadamard Quotient Theorem.

Finally, deep results from Diophantine analysis are introduced that will be used
later to understand the growth and other properties of linear recurrence sequences.

1.1. Main Definitions and Principal Properties

1.1.1. Recurrence Sequences. We restrict ourselves initially to linear re-
currence sequences, defined over a commutative ring R with a unit 1. Nonetheless,
many of the results and all the terminology below hold for much more general
algebraic domains. Linearity of the defining recurrence relation is essential, as is
the fact that the coefficients of that relation are constant elements of the ring of
definition. The qualifier ‘linear’ will therefore be omitted unless it is needed for
emphasis.

A linear recurrence sequence is a sequence a = (a(z)) of elements of R satisfying
a homogeneous linear recurrence relation

(1.1) a(z+n)=s1a(x+n—1)+- -+ sp_1a(z + 1) + sna(z), zeN
with constant coefficients s; € R, the coefficient ring. We will suppose throughout
that s, is not a zero divisor in R.

1.1.2. Characteristic Polynomial. The polynomial
f(X)=Xx" -5 X" =i — s 1 X 8

associated to the relation (1.1) is called its characteristic polynomial, and the rela-
tion is said to be of order n.

If R is a ring without zero divisors then any linear recurrence sequence a
satisfies a recurrence relation of minimal length. The characteristic polynomial
of the minimal length relation is the minimal polynomial of the sequence a. The
degree of that minimal polynomial is said to be the order of the linear recurrence

1




2 1. DEFINITIONS AND TECHNIQUES

sequence @¢. The minimal polynomial of the sequence a divides the characteristic
polynomial of a.

Linear recurrence sequences of order 2 and 3 are called binary and ternary
linear recurrence sequences respectively, and sequences over Z, Q, Q, R, C and
Qp respectively are known as integer, rational, algebraic, real, complex and p-adic
linear recurrence sequences.

Inhomogeneous linear recurrence relations take the form

a(lz+n)=s1a(z+n—1)+-- + sp_1a(z + 1) + spa(x) + Sny1, T EZy.
Such a sequence a then satisfies the homogeneous recurrence relation
n—1
alz+n+1)=(s1+ Da(z+n)+ Z(Si-t-l - fi)a(z +n —1) — spalzx)
i=1
of order n + 1, with characteristic polynomial
FX)=(X"—51 X" =i~ 5,1 X —5,)(X = 1).

1.1.3. Initial Values. For a linear recurrence sequence defined by a recur-
rence relation (1.1) of order n the elements a(l),...,a(n) are called the initial
values; they determine all other elements of the sequence. Further, if s, is an in-
vertible element of R then the sequence may be continued in the opposite direction,
yielding a(0),a(-1),a(-2),....

1.1.4. Set of Solutions of a Recurrence Relation over a Field. Given
a polynomial f defined over a field, consider the set £(f) of all possible linear
recurrence sequences satisfying the equation (1.1), and the set £*( f) of all sequences
for which f is their characteristic polynomial. If g is a divisor of f then L(g) C L(f).
If f is irreducible, then £*(f) contains all sequences from £(f) except the identically
ZEro sequence.

THEOREM 1.1. Let f and g be two polynomial defined over q field. Then

o {(c(z)) : c(z) =a(z)+b(x) a € L(f), be L(g9)} = L(lem(f, 9));
o L(f)NL(g) = L(ged(f,9));
L(f) C L(g) if and only if f|g.

For finite fields these results can be found in [671] or in [1378]; it is readily
checked that the proofs do not depend on the characteristic.

If ¢(z) = a(z)b(z), a € L(f), b € L(g), then ¢ is again a linear recurrence
sequence, but describing its characteristic polynomial is not immediate. This will
be dealt with in Chapter 4 below.

The set L(f) is a linear space of dimension n in the following sense. Consider
the n basic sequences a; — the impulse sequences — with initial values

a;(j) = dqj, h,j=1,...,n.

Any sequence satisfying the given recurrence relation can be uniquely represented

as a linear combination
n

a(z) = a(i)aiz), zEN
i=1
of the relevant set of impulse sequences. To see this, notice that the right-hand
side satisfies the relation (1.1), as does any linear combination of solutions of the
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relation, and it has the same initial values as does a. A minor modification of this
remark yields the identity
n
a(z+h) =) ah+dai(z), hzecZ,.
i=1
1.1.5. Linear recurrence sequences of finite length. For a field F and
constants m,n, 0 < 2m < n + 1, Elkies [340] studies the subset H,, of F**! of
sequences (z(0), . .. ,z(n)) satisfying some linear recurrence of degree m. Results on
the geometry of the set H,, are found, particularly for F of positive characteristic.

1.1.6. Generalized power sums. A generalized power sum is a finite expo-
nential sum

(1.2) a{z) = iAi(m)af, Tz €72y
1=1

with polynomial coefficients A;. Write deg A; = n; — 1 and set 2:1_1 n; = n. The
a; (presumed distinct) are the characteristic roots of the sum a(z), the positive
integers n; are their multiplicities, and the A, are the coefficients.

To understand the connection between generalized power sums and linear re-
currence sequences, define an operator E on sequences by (E(a)) (z) = a(z + 1),
so that (writing informally) (E — a)(z™ 1a®) = A(z"!)a®, where the difference
operator A is defined by (A(a)) (x) = a(z + 1) — a(z). Since A™(z"!)=0and E
is linear, the sum (1.2) is annihilated by the operator

m

H(E ~a)"=E"-51E" ' ~... 5, 1E—3s,.

i=1
That is, the sequence a satisfies the recurrence relation (1.1). Notice that the
characteristic roots «; and that the coefficients A; are elements of some extension
ring of the coefficient ring R. In particular, the sequence of traces of powers of
algebraic numbers a, with ¥ € K, where [K: Q] = d,

a(h) = Tk/e(da™),  heZy,

is a linear recurrence sequence satisfying a recurrence relation over Q of order at
most d, and with characteristic polynomial the minimal polynomial of o over Q.
This simple observation is used below in a variety of contexts.

Conversely, assume first that the characteristic polynomial of the recurrence
relation (1.1) has no repeated roots. Then every linear recurrence sequence satis-
fying (1.1) is a generalized power sum with constant coefficients. If f has repeated
roots the matter is a bit more complicated in characteristic p # 0: A recurrence
relation with characteristic roots of multiplicity exceeding p cannot have its general
solution given by a generalized power sum. However, apart from this subtlety —
and in any case for linear recurrence sequences defined over fields of characteristic
zero — we shall see below that linear recurrence sequences are given by generalized
power sums.

Assume that the coefficient ring R is|a field F, and let L denote the splitting
field of the minimal polynomial f over F. [Over L the polynomial factorizes as

FX) =TT = )™
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and o has characteristic roots ai,... ,am with multiplicities n;,... ,nm respec-
tively. There are constants Ay € L, j = 0,...,n; —land ¢ = 1,...,m, such
that

m n;—1 I+ .7 _

i=1 j=0 J

If F has characteristic zero then (1.3) can be rewritten in the form
m

(1.4) a(z) = ZAi(:c)af, z €N,
i=l

with polynomials 4;(X) € L[X] of degrees deg A; <n;—1,i=1,...,m. Moreover,
if the characteristic p of the field is at least max{ni,... ,nm} then (1.4) holds in any
event; in particular we obtain an exponential polynomial if the minimal polynomial
f is square-free, so that the A; all are constant, or if the characteristic p is at least
as great as the order n.

If f is the characteristic polynomial of a, then each polynomial A; has degree
precisely n; —1,i=1,... ,m.

1.1.7. Groups of recurrence sequences. Again we restrict attention to
the case of no repeated roots; thus f is a monic square-free polynomial over a
field F of characteristic zero. Here it is convenient to consider two-sided sequences.
Several authors have considered the following group structure defined on £(f ), more
precisely on equivalence classes of sequences. Two sequences & and b from L(f) are
equivalent if for some A € F* and £ € Z, Aa(z +{) = b(z) for all z € Z. That is, two
sequences are equivalent if they differ by a shift and multiplication by a non-zero
constant. Let G(f) denote the set of equivalence classes.

A group structure on G(f) may be defined as follows. In place of the repre-

sentation (1.4), consider the (n x n) Vandermonde matrix W = (aj-’l)?j= ,- Write

A for its determinant, and A; for the determinant of the matrix obtained from W
by replacing its j-th column with (0,...,0, 1)t. Then for every sequence a € L(f)
there is a unique representation '

1 « -
(1.5) a(@) =% ; Aja;o? .
Write a « [a1,... ,G,) in this case, and define the product of two sequences a <
(a1, .. ,an) and b « (b1, ... ,by] to be the sequence ¢ « [a1b1, ... ,@nby]. Define

the product of two classes to be the product of their representatives; this product
is well-defined by [61, Lemma 5.3.2] and makes G(f) an abelian group. Ballot [61]
provides a detailed analysis and gives applications of the group structure to the
study of divisors of linear recurrence sequences. For more background on these
groups in the binary case, see (689], [690]. For f having exactly one double root,
Ballot [62] gives a meaningful generalization of the group G(f).

1.1.8. Dominating roots. For sequences over normed fields — and in par-
ticular over C — it is convenient to order the characteristic roots as

|a1‘ Z Z |am|-
The r roots of maximum norm

lay| = - = |ar| > lars1| 2 - 2 |oml],
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are called dominating roots.

A sequence with a unique dominating root is often relatively easy to deal with.
Thus, many results below are stated for such sequences only. Boyd [143] demon-
strates that a unique dominating root is present for a wide class of irreducible
characteristic polynomials.

1.1.9. Nondegeneracy. The linear recurrence sequence (1.1) is degenerate if
it has a pair of distinct roots whose ratio is a root of unity. Conversely, if af # of,
1<i<j<m,z=1,2...,it is non-degenerate. Over infinite fields this definition
determines an important class of sequences. Furthermore, the study of arbitrary
linear recurrence sequences can effectively be reduced to that of non-degenerate
linear recurrence sequences in the following sense.

THEOREM 1.2. Let a denote a linear recurrence sequence of order n over an
algebraic number field K of degree d over Q. Then there is a constant

M(d,n) < { &P (@n(Blogn)!/?) ifd=1, and
T | 2ndHt ifd>2

such that for some M < M(d,n) each subsequence (a(Mz + £)) is either identically
zero, or is non-degenerate.

This theorem is essentially a combination of results of [87] (for d = 1) and
of [1083] (for d > 2). The proof is based on a bound for the least common multiple
of periods of roots of unity in K (the period of a root of unity p is the least t € N
with p* = 1). See [1365] for some improvements and algorithmic applications of
those results. Schmidt [1149] provides an upper bound on the number of such
arithmetic progressions which depends only on n.

1.1.10. Arithmetic sub-progressions. The following useful observation is
related to the previous result. The Skolem—~Mahler-Lech Theorem, of which more
below, is a particularly important application.

THEOREM 1.3. Any subsequence (a(kz +¢)), k € N, £ € Z; of a linear re-
currence sequence a of order n is a linear recurrence sequence of order at most
n.

This statement is clear for a generalized power sum of the form (1.2); a linear
recurrence sequence of order n is a generalized power sum of order n over any
commutative ring [1012], [1295]. The converse of Theorem 1.3 does not hold in
such generality but is true in characteristic zero. In that case it is a non-trivial
result that an arithmetic progression (more precisely, a finite number of interwoven
arithmetic progressions) is essentially the only subsequence of indices upon which
a non-degenerate linear recurrence sequence is again a linear recurrence sequence.

THEOREM 1.4. Let a denote a non-degenerate linear recurrence sequence over
a field of characteristic zero, and let (z) denote an arbitrary sequence of distinct
natural numbers. If (a(zp)) is a linear recurrence sequence then there is an integer
d > 1 and certain remaindersr; € {0,1,...,d—1} so that with at most finitely many
exceptions the sequence (zy) is the monotonically increasing sequence of integers of
the shape dx + r;.

This deep theorem follows from the work on sums of S-units; see Sections 1.5
and 2.1.




