

BE S U R e B R S g 0 O T SRS Loy T IR R S R R SR

The Theory of Computer Science

A Programming Approach

J. M. BRADY

Department of Computer Science
University of Essex

v

LONDON
CHAPMAN AND HAI

A Halsted Press Book
John Wiley & Sons, New York

TRV E S A R e, ARG ARG W e T - e B I

A

First published 1977
by Chapman and Hall Ltd
11 New Fetter Lane, London EC4P 4EF

©1977J. M. Brady

Typeset by Alden Press, Oxford,
London and Northampton

and printed in Great Britain by
Richard Clay (The Chaucer Press) Ltd,
Bungay, Suffolk

ISBN 0 412 14930 2 (cased edition)
ISBN 0 412 15040 9 (Science Paperback edition)

This title is available in both hardbound and paperback editions. The
paperback edition is sold subject to the condition that if\shall not, by way
of trade or otherwise, be lent, re-sold, hired out, or otherwise circulated
without the publisher’s prior consent in any form of binding or cover
other than that in which it is published and without a similar condition
including this condition being imposed on the subsequent purchaser.

All rights reserved. No part of this book may be reprinted, or reproduced
or utilized in any form or by any electronic, mechanical or other means,
now known or hereafter invented, including photocopying and recording,
or in any information storage and retrieval system, without permission in
writing from the Publisher.

Distributed in the U.S.A. by Halsted Press,
a Division of John Wiley & Sons, Inc., New York

Library of Congress Cataloging in Publication Data

Brady,J M
The theory of computer science.

(Science paperbacks)

“A Halsted Press book.”

Bibliography: p.

Includes index.

1. Programming (Electronic computers) 2. Machine

theory. 3. Computable functions. I. Title.
QA76.B697 001.6'4'01 77-729
ISBN 0-470-99103-8

Preface

The first electronic digital computer was constructed as recently as the 1940s.
In the thirty or so years that have elapsed since then, the use of computers has
spread to the point where there can now be very few people in Western society
whose lives are not affected by computation. The vast majority of companies,
government departments, and institutes of tertiary education have their own
computer centres, as does a large and growing number of secondary schools.
Although we can hardly begin to conjecture what computers will be used for
after another thirty years have gone by, we can safely predict applications such
as automated traffic lights, assembly lines, seif-piloted vehicles for planetary
exploration, automated timetable and route planning services, and machines to
work autonomously in environments, such as the ocean bed, which are hostile to
_man. In fact, prototypes for most of these activities already exist. Equally, the
rapidly decreasing cost- of computers will mean that, as is already the case with
television, a substantial proportion of the population will own one or more com-
" puters, whose power will match that of current large machines. We can hardly
begin to estimate the impact this will eventually have on the dissemination of
information, the quality of life, and the organisation of society.

To date, the development of computers has had an essentially engineering or
technological flavour. Spurred on by massive backing from industry and govern-
ment, new designs and components for machines, and new programming
languages, constructs and applications have been developed at an incredible pace.
Currently the pace seems not so much to be slowing down as increasing. ‘

Meanwhile, the normal scientific process has been at work. A growing number
of workers have sifted and abstracted the many concepts which have been
suggested, and have developed modzls for the analysis of computing phenomena,
the explanation of observed regularities, and the suggestion of new lines of
development. As the title suggests, this book is an introduction to the theory of
using computers. One of the impressions which I hope to convey concerns the
vitality, relevance and immediacy of computing theory to computing practice.
Chapter 1 explains how the theory is sampled in various ways in the second part
of the book in chapters covering the pioneering work of John McCarthy (Chapter
6), attempts to make software reliable (Chapter 7), and ideas regarding the
meaning of programming languages (Chapter 8). An introductory text should
not aim to be exhaustive in its coverage of the field but should select according
to explicitly stated criteria. Two topics which pressed for inclusion in part two,
but were eventually excluded, were finite automata and complexity theory.

The former was excluded on the grounds that several excellent texts are already

xi THE THEORY OF COMPUTER SCIENCE

available. The latter was excluded because I felt that current work was more
inspired by the ideas of Part 1 than by computing practice.

One interesting anomaly in the development of computer science concerns
the fact that the study of precise definitions of ‘computable’ predated the
actual construction of computers! This came about because mathematicians also
postulated the notion of ‘effective procedure’ (what we nowadays call a program)
in connection with conjectures about numbers and logic, and sought to make
their intuitions precise. Part 1 of the book discusses what we call ‘meta’ computer
science. We shall find that the idea of computability is intimately related to
some of the oldest paradoxes of philosophy and the foundations of mathematics.
In particular, it is closely related to GOdel’s theorem, one of the most remarkable
intellectual advances of the twentieth century, which essentially states that there
is a limit to what can be proved using formal languages such as second-order
predicate logic.

However, the excitement of working in computer science is not of itself
sufficient reason for writing a book! There are so many books being produced
nowadays that any author ought reasonably to justify adding {\is contribution.
There were, 1 believe, three main reasons why this book was written, and which
distinguish it from most others covering similar material.

Firstly, I strongly believe that the theory of computing must relate directly
to a student’s intuitions, which are gained from computing practice. These refer
to programming, data structuring, machine design, and so on. Thus in Chapter 3
for example we view theorems in recursive function theory as programming
problems, and exhibit the surprisingly limited stock of programming techniques
which have been developed to date for such proofs. Similarly, Chapter 5 views
the problem of proving the equipollence of Turing’s formalism and the general
recursive functions (GRF).as a computer problem, and thereby exhibits
a shortcoming in the GRF.

This approach, especially to the material present in Part 1, should be con-
trasted with the more usual abstract mathematical treatment, which ignores
computing science intuitions, and which results from the historical ‘accident’
referred to above, One exception to this criticism is Marvin Minsky’s (1967)
machine-baseu account. Indeed, this book can be seen as bearing the same relation
to Minsky’s as programming does to computer hardware design, an observation
which finally explains the title of the book.

One notable consequence of taking a programming approach to the theory of
computation is that I deny that the main prerequisite for reading the book is
a familiarity with modern pure mathematical ideas such as set theory, algebraic
structures, and formal logic. Certainly, a familiarity with such ideas would make
parts of the material easier to assimilate, but my experience has been that
Appendix A contains sufficient mathematical background. The main prerequisite
is computing experience, and appeals to computing intuitions and practice
pervade the book.

The second distinctive feature of the book is closely related to the first. Over

PREFACE xiii

the years I have detected what I believe to be a confusion amongst my fellow
computer scientists about the relationship between the theory and metatheory
of computer science. I shall argue in Chapter 1 that theory and metatheory are
very different ventures, so that to criticise Turing machines, for example, on the
grounds that their architecture is not at all like that of von Neumann computers
is; quite simply, beside the point.

Finally, I have tried, in Part 2 of the book, to correct the enormous mismatch
between what is commonly taught as theory (usually the Part 1 metatheory),
and the issues with which computer science theorists concern themselves. Very
few computer scientists actively work in recursive function theory. They do
work on formal semantics of programming languages, correctness of programs,
and so on. At the risk of displaying bias, [have tried to tease out some of the
presuppositions underlying models of meaning and correctness, to get the reader
to think about their possible shortcomings, and to be aware of the as yet
primitive state of computer science.

The approach to the theory of computation outlined in this book developed
over five years of teaching an introductory course at the University of Essex.
Roughly speaking, it has been used for a two-semester (second year) under-
graduate, and a one-semester graduate, course. The course was always accom-
panied by two projects. The first required the students to implement a Universal
Turing Machine (see Checkpoint 2.24) in a suitable high level programming
language. The second required students to read about a half dozen research
papers on a topic such as lambda calculus models or complexity hierarchies, and
to write an essay expressing their understanding and assessment of the material.
[have found the latter project particularly valuable for convincing science
students, who, as passive consumers, all too often are taught various aspects of
Absolute Truth, that controversy, consensus and value judgements are endemic
to science.

Finally, I gratefully acknowledge the inspiration, criticism, and encourage-
ment I have received while developing this book. Firstly, some of the workers
whose ideas most inspired me to think about the theory of computer science in
the first place: John McCarthy, Peter Landin, Rod Burstall, Christopher
Strachey, Tony Hoare, John Reynolds, Robin Milner, David Park, David
Luckham, Peter Laver and Bob Floyd. Secondly my colleagues at Essex:
Richard Bornat, Pat Hayes, Ray Turner, Bernard Sufrin, John Laski, Tony
Brooker, Lockwood Morris, Cliff Lloyd, and Barry Cornelius. Ray Turner, Tony
Brooker, and Naomi Brady read various drafts and suggested a great many
improvements. Pam Short did a marvellous job of typing. Most of all I acknow-
ledge the support I received from my family.

October, 1976 J. M, Brady

Contents

Preface

1 Overview
1.1 Introduction
1.2 Part 1: Meta computer science
1.2.1 Defining ‘computable’
1.2.2 The limitations of computability
1.2.3 The limitations of our intuition
1.3 Part 2: Towards a theory of computer science
1.3.1 Problem solving
1.3.2 Programming languages
1.3.3 Data structures
1.3.4 Program correctness
1.3.5 Program termination
1.3.6 Effectiveness of program solution
1.3.7 Computers

PART ONE: Meta Computer Science

2 The Abstract Machine Approach

2.1 Introduction

2.2 Basic machines and finite state machines
2.3 Sequences of inputs; states

2.4 The limitations of finite state machines
2.5 Turing machines

2.6 A universal Turing machine

2.7 Shannon’s complexity measure for Turing machines

2.8 More computer-like abstract machines
2.8.1 B machines
2.8.2 Program machines
2.8.3 RASP’s

3 The Limitations of Computer Science
3.1 Introduction
3.2 A non-computable function
3.3 Enumerability and decidability
3.3.1 Enumerability
3.3.2 Decidability

page xi

—
O 000N WW——

12
13
13
14
14

19
19
19
24
28
30
39
- 41
46
47
48
50

51
51
53
56
57
64

vii

vii THE THEORY OF COMPUTER SCIENCE

3.4 A survey of unsolvability results
3.4.1 Recursive function theory
3.4.2 Computability results in mathematics and logic
3.4.3 Program schemas: the work of Luckham, Park, and
Paterson
3.4.4 Formal language theory: the syntax of programming
languages

4 The Functional or Programming Approach
4.1 Introduction
4.2 The general recursive functions
4.2.1 Generalized composition
4.2.2 Primitive recursion
4.2.3 The GRF
4.3 Ackermann’s funetion and another look at complexity
4.3.1 Ackermann’s function

5 Evidencé in Support of Turing’s Thesis
5.1 Introduction
5.2 A GRF simulator for Turing machines

5.2.1 Initialize

5.2.2 Mainloop

5.2.3 Extractresuit

5.2.4 Ackermann’s function is a GRF
5.3 A Turing machine compiler for the GRF
5.4 Numbers as data structures

PART TWO: Towards a Science of Computation

6 McCarthy’s Pioneering Studies

6.1 Introduction

6.2 McCarthy’s formalism

6.3 S-expressions

6.4 Application of the formalism: equivalence of programs

6.5 Application of the formalism: the meaning of programming
languages

7 Making Programs Reliable
7.1 Introduction
7.2 Program testing

7.3 The inductive assertion technique for proving programs correct

7.3.1 Introduction: Floyd's work

7.3.2 Hoare’s logic of programs

7.3.3 Towards automatic proofs of correctness
7.4 The foundational studies of Zohar Manna

69
69
71
75

83

92
92
96
97
100
104
109
109

117
117
117
118
119
122
123
125
129

137
137
139
147
154
168

175
175
179
186
186
197
206
208

7.4.1 Introduction
7.4.2 The correctness of flow chart programs

7.5 Reflections

8 Questions of Meaning

8.1 Introduction

8.2 The lambda calculus

8.3 Operational semantics: making the machine explicit
8.3.1 Observing the basic correspondence
8.3.2 Evaluating AEs
8.3.3 Translating ALGOL 60 into (imperative) AEs
8.3.4 Postscript on operational semantics: VDL

8.4 Mathematical semantics: de-emphasizing the machine

Appendix A Mathematical Prerequisites
Appendix B Programming Prerequisites
References |

Author Index

Subject Index

CONTENTS

ix

208
209
214

218
218
224
231
231
234
238
240
241

253
268
272
281
283

1 Overview

1.1 Introduction

Computer science has emerged over the past twenty or so years as a discipline in
its own right. During that time, a host of new ideas, such as process, data struc-
ture, and timesharing, have been established. The primary activity of computing
is writing programs in programming languages which when executed on a com-
puter manipulate data in such a way as to solve problems. The theory of com-
putation chronicles the attempt to establish a theory to account for all of these
phenomena in much the same way that classical dynamics attempts to explain
the motion of objects.

Any scientific theory is primarily concerned with representing in the abstract
realm of mathematics the real-world entities that comprise its subject matter.
The representation should facilitate the discovery of mathematical relationships
in the form of equations or laws. Thus, in the case of classical dynamics, where
the real-world entities include distance, speed, force, and acceleration, distance
is usually represented by a function of time, and speed as the derivative of such_
a distance function. The basic relations are Newton’s laws of motion and his laws
of gravitation. The relationships discovered within the theory can be interpreted
in terms of real-world entities to predict or explain observed real-world phenom-
ena. Alternatively one may be concerned to extend the range of applicability of
the theory to accommodate further observations.

Any theory increases our understanding of, and systematizes our knowledge
about, the subject domain. But a more immediate reason for constructing
theories derives from the fact that it is usually the case that the theory also leads
to significant practical advances. So it is with the theory of computer science.
Section 1.3, which introduces Part 2 of the book, describes several shortcomings
of today’s computer science practice in which the theory of computation can be
expected to make major contributions.

To each theory there is a corresponding metatheory (Greek: meta = about)
which is concerned with analysing the theory itself, for example by precisely
defining the concepts used in the theory and in discovering the theory’s limita-
tions. Thus, the metatheory of mathematics, naturally called metamathematics,
formalizes the notions of set, proof, and theorem, and attempts to discover their
limitations. A major result of metamathematics, the undecidability of predicate
logic, implies that it is impossible to write a singie program that decides for all
legal sentences in the logic which are theorems and which are not.

This situation is typical. The theory is concerned with establishing useful
positive results; the metatheory consists largely of results, often of a negative

2 THE THEORY OF COMPUTER SCIENCE

nature, which define and delimit the subject matter of the theory. Part 1 of the
book, introduced in the following section, is an introduction to meta computer
science. The major goals are to define precisely what is meant by ‘computable’
and to establish meta-results such as the unsolvability of the Halting problem
for Turing machines, which implies that it is impossible to write a single pro-

- gram P that will decide for any other program Q input to it (in the same way
that programs are often submitted as data to a compiler program) whether or
not Q will terminate its computation in a finite time. On the other hand, Part 2
of the book will introduce some of the areas in which computer scientists have
worked towards the discovery of positive results.

The differing goals of the theory and metatheory of computer science are re-
flected in the differing approaches to computability which they suggest. Thus
the systems we shall meet in Part 1 of the book — Turing machines and the Gen-
eral Recursive Functions — enable results of meta computer science to be proved
easily, but are very inconvenient to use. Conversely, systems like McCarthy’s
which we shall meet in Part 2 (Chapter 6) are much more convenient and practi
cal for proving results in but are correspondingly harder to prove theorems
about. It is unreasonable to indict the formalisms of Part 1 (as many people
within computer science do) on the grounds of their impracticality or lack of
similarity to modern computers or programming languages; that is simply not
their purpose. :

As a matter of fact, meta computer science, under its more usual name of
Recursive Function Theory, pre-dated the actual construction of computers by
several years! For example, Turing machines, which we shall meet in Chapter 2,
were introduced in 1936. This apparently paradoxical situation arose largely
because (meta)mathematicians had for many years worked on problems which
called for ‘effective processes’ or ‘algorithms’ (or, as we would now say, ‘pro-
grams’). In 1900, one of the greatest mathematicians of the century, David
Hilbers (1862-1943), delivered a very famous and seminal lecture to the Second
International Congress of Mathematicians, in which he posed 23 problems, some
of which remain unsolved to this day. The tenth of these problems asked
whether it is possible to write a program to decide whether an arbitrary poly-
nomial in a finite number of variables with integral coefficients has integral
roots. It was proved by Matyasevich in 1971 that there can be no such program.

One of the distinguishing features of this book is the computer science view-
point which we adopt, particularly regarding the material in Part 1, which is
more usually considered to be a part of mathematics that is somehow relevant to
computer science. Instead, we consider the material to be the metatheory of
computer science. Thus we shall be concerned at all times to relate the ideas we
introduce to computer science. We shall rely on intuitions about programming
etc., and we will draw our examples from computer science. This is particularly
true of Chapter 3, in which we discuss non-computable functions or unsolvable
problems. The examples to which we give pride of place come from the work of
Luckham, Park, and Paterson (1970) and from the theory of formal grammars.

OVERVIEW 3

The point about these examples, as opposed to the more usual ones of mathe-
matics or logic (which we also give but not so prominently), is that they were
discovered in the course of answering problems posed in computer science.

There is one particular idea which we want tc promote, that forms the basis
of our treatment of the material in Chapters 3, 4, and 5; it can be best intro-
duced via an example. In Chapter 3 we shall be concerned with the question of
whether or not various sets § are enumerable. One way to define enumerability
is in terms of a computable function f: N =S from the natural numbers onto §.
An alternative viewpoint, less formal but more intuitively appealing to computer
scientists, is that a set S is enumerable if there is a program that successively
prints the elements of S in such a way that each element of S is listed within a
finite time from the start of the process. Accordingly, our ‘proofs’ of enumer-
ability will usually consist of sketching a program to carry out the enumeration.
We thus arrive at the idea of a program as a constructive proof. This idea is de-
veloped much more fully in Chapters 4 and 5, where we shall show how a pro-
gramming approach can give real insight into what has traditionally been con-
sidered a difficult proof. We will try to convince the reader that he can most
usefully approach the Theory of Computation by applying his extensive skill for
constructing programs. Hoare and Allison (1972) seem to argue along much the
same lines, and we shall refer to their paper several times. ‘

In the final analysis, it will be the richness or poverty of the theory of com-
putation that will determine the scope and standing of computer science. The
author will try to convince the reader that the theory is not, as one respected
professor of computer science once avowed to him, *“as dry as sawdust”, but is
vital, vibrant, and fascinating.

The remainder of this introductory chapter consists of more detailed over-
views of the material to be covered in Parts 1 (Chapters 2-5) and 2 (Chapters
6-8).

1.2 PART 1: Meta computer science

We saw in the preceding section that the two major goals of meta computer
science are: (i) to define ‘computable’ precisely, and (ii) given such a precise
definition, to discover what (if any) are the theoretical limitations of computa--
bility, thus delimiting the subject matter of computer science.

1.2.1 Defining ‘computable’

Computer scientists have a deep intuitive grasp of the notion of computable in
terms of one or more of ‘algorithm’, ‘effective process’, ‘program’, ‘procedure’,
and ‘routine’. However, while we strongly believe that the theory of computa-
tion should be presented so as to relate to the intuition of the computer science
student, we nevertheless wish to issue a cautionary note against placing too
heavy a reliance on intuition at the very basis of the theory of computer science.

4 THE THEORY OF COMPUTER SCIENCE

In case the experience of set theory and Russell’s paradox (see Appendix A, Sec-
tion A.5.2) does not convince the reader, we have included in the last part of
this section a number of comments that expose the limitations of our intuition.

For 2 computer scientist, the most obvious way to define ‘computable is to
say that something is computable precisely in the case that it can be programmed
in a programming language L, where candidates for L might include FORTRAN,
ALGOL 60, and so on. Such a suggestion must be rejected for meta computer
science, since, as we saw in the preceeding section, a hallmark of systems in
metatheories is that they should be sufficiently simple to enable the proofs of
metatheorems to be given easily. However, this does not rule out the possibility
that the suggestion could profitably be taken up as part of computer science. It
turns out that there is a problem with the scheme. We clearly have to be able to
deduce for any program exactly what it computes, and this problem — the so-

. —called semantics problem - is far from trivial (see Chapter 8).)

As we saw in the preceeding section, since at least 1900, mathematicians and
logicians had attempted to give a precise definition of ‘computable’. These
efforts culminated in 1936 with the simultaneous (independent) publication by
Turing in England and Church in the United States of America of suggested
definitions which are nowadays accepted as correct.

Church’s paper introduced the A-calculus as a uniform way of denoting com-
putable functions (see Sections 6.1 and 8.2) and he went on to prove the un-
decidability of predicate logic mentioned above. Nowadays the relevance of
Church’s work to computer science is seen in its yée as the basis of the approach
to representing procedures in programming languages as different as LISP
(McCarthy et al., 1962) and ALGOL 68 (van Wijngaarden et al., 1969), and its
use in establishing a formal definition of the meaning of computing constructs
(see Chapter 8). ‘

Turing approached the problem of giving a formal definition of ‘computable’
directly, by making precise what he argued as his ‘intuitive notion’. In a truly re-
markable paper he presented an intuitively-appealing development of a class of
‘abstract machines’ which we nowadays call Turing machines (from now on
abbreviated to TM). The main point of his paper was to defend the following
claim:

(Turing’s thesis) The(processes which could naturally be called algorithms are
precisely those which can be carried out on Turing machines.

It is important to realize that Turing’s thesis cannot be proved or disproved.
Rather is embodies a fundamental tenet or law of computer science. The reason-
ableness or otherwise of this belief can be debated but not proved. (An analog-
ous situation is presented by Newton’s ‘laws’ of motion, which were believed un-
questionably until Einstein’s theory of relativity suggested a refinement.)

We now present two arguments in favour, ana two against, Turing’s thesis.

FOR-1 It is difficult to fault Turing’s intuitive development of his notion of
computable. An alternative intuitive development is presented in Chapter 2.

OVERVIEW 5

FOR-2 Since 1936 many great logicians, mathematicians, and computer
scientists have framed alternative definitions of ‘computable’. All of them have
come up with the same solution in the sense that the set of computable func-
tions is the same in all cases. The consensus suggests that Turing did indeed dis-
cover the correct notion.

AGAINST-1 Turing’s system is not rich enough. The fact that Turing
machines are so primitive suggests that there are likely to be functions that one
would ‘naturally’ want to accept as computable, but which no Turing machine is
capable of computing. (It is probably fair to say that very few people would now
advance this argument; however, consider its force in 1936.)

AGAINST-2 Turing’s system is far too rich. There are functions that a Turing

. machine can in theory compute but which it is unrealistic to accept as com-
putable. For example, it is surely not realistic to call a function ‘computable’ if
any Turing machine to compute it (even if it executes a computational step
every microsecond) still would take ten times the life of the universe to calculate
an answer. ‘

On balance, Turing’s claim is today accepted, despite the misgivings many '
people have regarding the second argument against it. Indeed, this argument is
one of the motivations behind the study of ‘complexity’ of programs (see Sec-
tion 1.3).

Broadly speaking, there have been two main approaches to framing a defini-
tion of ‘computable’, which we may call the ‘abstract machine approach’, and
the ‘functional’ or ‘programming’ approach.

The former approach, which includes the work of Turing (1936), Wang
(1957), Shepherdson and Sturgis (1963), Elgot and Robinson (1964), and
Minsky (1967), consists of developing mathematical models of executing
mechanisms (processors) on which computations may be ‘run’. ‘Computable’ is
then defined to mean ‘computable on one of the abstract machines’. The
abstract machine approach is illustrated in Chapter 2, which consists of an in-
tuitive development of the Turing machine (TM) model, a discussion of ‘Uni-
versal’ machines, and Shannon’s suggested notion of complexity of machines.
The chapter ends with a brief look at some other abstract machine approaches.

The functional or programming approach, which includes the work of Church
(1941), Herbrand-Géodel-Kleene (see Hermes 1965, Chapter 5), Hilbert—Kleene
(the General Recursive Functions), Kleene (1936), and McCarthy (1963), essen-
tially consists of developing mathematical systems of functions for ‘program-
ming in’. We shall illustrate this in Chapter 4, by describing the General Recur-
sive Functions and Grzegroczyk’s (1953) notion of complexity.
~ One instance of the second argument (the ‘concensus’ argument) in support
of Turing’s thesis is that a function belongs to the General Recursive Functions
(GRF) precisely when it is computable according to Turing. Since we are advo-
cating viewing the GRF as a programming language, it is reasonable to ask what
the equivalence of the GRF and Turing machines amounts to in programming
terms. On the one hand we have a linguistic approach GRF, and on the other a

6 THE THEORY OF COMPUTER SCIENCE

machine approach TM. We have proofs that to each GRF there corresponds a
TM, and vice versa. Clearly this suggests a pair of programs: A TM ‘simulator’ in
the GRF, and a ‘compiler’ from GRF to TM. The main features of such a pair of
programs are described in Chapter 5. In particular, it is shown how such a pro-
gramming approach brings out shortcomings in a system (GRF) apparently in-
tended as part of meta computer science. This view of the equivalence problem
as an example of the compiler problem, which we know to be rather difficult,
helps us to understand why it was not considered ‘obvious’ in 1936 that Church
and Turing had equivalent notions. (I thank Professor George Barnard for this
piece of historical information.)

1.2.2 The limitations of computability

Given a precise definition of what it means for a function to be computable, we
may ask whether all functions are computable or whether there are some well-
defined functions that we can prove are not computable. Put another way, we
ask whether there are any well-defined problems that we can prove it is not

~ possible to program a solution to. It is important to realize that by ‘possible’ we
mean ‘possible in theory” as opposed to ‘financially possible given current re-
sources’ or ‘possible given the current state of the art of programming’. We de-
vote Chapter 3 to this issue and will see that, as we pointed out in the preceding
section, there are indeed problems that we can prove cannot be solved algorith-
mically. We shall see that the theoretical limitations on what we can program
solutions to are extremely subtle; indeed Minsky notes (1967, page vii): ““There
is no reason to suppose machines have any limitations not shared by man”. To
get a feel for the limitations of computability, we consider two topics in com-
puter science that give rise to unsolvable problems, namely the equivalence of
programs and formal grammars.

1.2.3 The limitations of our intuition

To round off this section we present two observations to point up the need for a
precise notion of ‘computable’ on which to build a theory of computer science.
Hoare and Allison (1972) present a variant on the same basic theme.

(1) Descriptions

An algorithm can be thought of as an unambiguous description of how an exe-
cuting mechanism is to proceed from step to step. In the final analysis, an algor-
ithm is a description, so it is reasonable to suppose that any algorithm can be
described in any powerful enough language, say English. Indeed, many descrip-
tions we find in everyday life can be interpreted as algorithms: Knitting patterns,
recipes, instructions from a manual, route-finder maps, and so on. Given that a
description is a list of English words, we may order descriptions by saying that a
description d, precedes description d; if either dy has less letters than d; or, if

OVERVIEW 7

they have the same number, d, precedes d, in dictionary order. Given any set of
descriptions we can talk about the shortest (since any totally-ordered set has a
least element). Now consider the following description:

The smallest number whose shortest description requires more than eleven
words.

No such number can exist! For if it did, the above description would describe
it but would take only eleven words! The problem is that we did not impose any
restrictions on lists of words that form acceptable descriptions. For more in this
direction see Hermes (1965, Chapter 1).

(2) Self-application (following Scott, 1970)
Some functions take other functions as arguments; an example is the following
general summation function, which is easily programmed in Algol 60:

sum(f,m,n) = f(m)+ ...+ f(n)

Another example is the function twice, whose result is also a function:

(twice(N)(x) = f(f(x))

so that (twice(sq))(3) = 81. More interesting though is the fact that twice can be
applied to itself, for example:

twice(twice)(sq)(2) = 256

Unfortunately, we cannot allow functions to be applied to themselves quite
generally, since consider the function selfzero defined (cf. Russell’s paradox) by:

selfzero(f) = f(f) = 0» 1,0
It is all too easy to show that:
selfzero(selfzero) = 0 iff selfzero(selfzero) + 0

The solution to this paradox lies in realizing that selfzero is allowed to take any
function as an argument. It turns out that there is no problem if selfzero is only
applied to computable functions. Selfzero can in fact be programmed in many
programming languages; the self-application just does not terminate.

This is not quite as irrelevant as might appear at first glance. Firstly, we
would like to be able to program self-applying functions, or at least functions
like sum which take any computable function as an argument. Secondly, the
same problem arises in giving a simplified idealized model of computer storage.
Suppose we consider memory to be a set L of locations, each capable of holding
any of a set V of values. A state of memory can be modelled by a contents func-
tion:

cont:L—>V

which gives the value cont (/) contained in the location /. Now one sort of value

8 THE THEORY OF COMPUTER SCIENCE

that compilers often plant in memory is commands. A command cmd is
executed in order to change the state of memory, and so it can be modelied by a
state-change function:

cmd:(L>V)>L->V)

Suppose now that cont is a state of memory, and that cont(/) is a command cmd.
We can clearly execute cmd in state cont to get a new state cmd(cont). That is,
we can execute:

cont (/)(cont)

which is just one step away from the self-application problem. Hoare and Allison
(1972) also discuss the self-application problem in terms of Grelling’s formula-
tion of the Russell paradox. They suggest that one way round the problem is to
prevent it from occurring by emulating Russell’s set theory solution consisting
of a precise theory of types; such a solution is implemented in heavily typed pro- .
gramming languages such as ALGOL 68. Section 8.2 outlines a different, and
typeless, solution due to Scott (1970).

1.3 PART 2: Towards a theory of computer science

Part 1 established a framework into which any theory of computation must fit.
The essentially negative results presented in Chapter 3 about the theory show
that there is a theoretical limit to what can be computed and to what positive
results can be achieved within the theory. Unfortunately, the metatheory offers
hardly any suggestions about the kinds of problem areas that the theory might
profitably address, about the kinds of results achievable within those areas, or
about the techniques by which those results might be achieved. As we shall see
in Chapter 6, even the formalisms of the metatheory are not especially useful
when it comes to developing a theory. For example, whereas Part 1 tells us that
it is impossible to write a single program to determine for all programs P and all
inputs d to P whether or not the computation of P on d terminates, it is never-
theless often possible to be convinced about the termination or nontermination
for many individual pairs Pd; the metatheory remains silent regarding how we
might approach the question for a particular pair P,d.

Part 2, consisting of Chapters 6-8, introduces some of the work that has been
carried out in the past twenty or so years aimed at filling out the theory with
positive results about a number of problem areas. We list below some of the-
problems that have attracted the most attention to date, and then describe in
greater detail the plan of Part 2. _

For a theory which is so young, computer science displays a quite remark-
able richness, breadth, and vigour, which makes it all the more surprising that
there is a widespread opinion that most theoretical studies are esoteric game-
playing of no real or lasting value. There seem to be two main reasons for this

