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PREFACE

This text provides an introduction to the analysis techniques used in the design
of nonlinear and optimal feedback control systems. The fundamental topics of
stability, controllability, and optimality are developed and presented in a unique
unified fashion that establishes strong connections between all three topics.

There are two important approaches to the design of feedback controllers
for nonlinear systems: Lyapunov stability methods and optimal control theory.
On the surface, these two approaches might not appear to have much in com-
mon. Lyapunov stability does not address optimality, while optimal control the-
ory generally provides only open-loop control, which need not provide stabil-
ity. In between these two approaches there is a large, and until now, relatively
unexplored area of function minimizing feedback controllers. These controllers
address optimality, but on an instantaneous basis, yielding closed-loop feedback
controllers without having to solve an optimal control two-point boundary value
problem. Instantaneous function minimization can be expected to miss global
aspects of optimality that are provided in an optimal control solution. However,
when function minimization is combined with Lyapunov stability methods, the
resulting controllers do contain global information. These function minimizing
Lyapunov controllers have proven to be highly effective and also robust with
respect to uncertainties in system models, noisy inputs, and so on.

With the recent growth in interest in nonlinear systems, many engineering
departments are beginning to add courses on nonlinear control systems. At the
same time, optimal control theory has matured to the point where optimal con-
trols courses can be modified to include other topics in nonlinear control sys-
tems design.

This text provides an integrated approach to both nonlinear and optimal con-
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Xiv PREFACE
trol systems. The emphasis is on the fundamental topics of stability, controll-
ability, and optimality, and on the corresponding geometry associated with these
topics. In Chapter 1 we discuss background material on nonlinear dynamical
systems and various phenomena that can occur only in nonlinear systems, such
as limit cycles, chatter, and chaotic motion. In addition, we present numerical
algorithms for solving systems of nonlinear differential equations, so that stu-
dents can quickly begin simulating nonlinear systems, using these routines or
commercial software, such as MATLAB. Chapter 2 presents an introduction to
nonlinear control systems. In Chapter 3 we present basic results in nonlinear
parameter optimization and parametric two-player games, results that are used
in later chapters. Chapter 4 covers Lyapunov stability theory, and Chapter 5
applies these results to the design of Lyapunov optimizing feedback controllers.
Chapter 6 is devoted to controllability concepts associated with nonlinear con-
trol systems. In particular, the controllability minimum principle is developed,
which allows for the determination of the boundary of the set of points that
are controllable to a specified target. This leads directly to a development of
Pontryagin’s minimum principle in Chapter 7. This principle is used to solve
optimal control problems and for the design of optimal controllers in Chapter 8.
The same geometric ideas introduced in Chapters 6 and 7 also lead to necessary
conditions for two-player differential games, discussed in Chapter 9.

This text is designed for one-semester introductory senior- or graduate-level
nonlinear and optimal control systems courses and does not presume any back-
ground on the student’s part beyond differential equations. In particular, we do
not assume that the student has taken a linear control systems course. Although
our focus is on nonlinear systems, this does not preclude us from referring to
linear systems or using a number of linear systems (with bounded controls,
which make these systems nonlinear) as examples. Any linear control systems
background that is required to understand any allusion to linear systems is
presented directly in the text. Throughout the text we focus on a variety of
example systems. Viewing such systems in terms of stability, controllability,
and optimality provides the student with an opportunity to compare the same
systems in different design contexts. In these examples we consider not only
physical dynamical systems, but also biological systems, economic systems,
and so on. Thus this text is suitable for students from a wide range of disci-
plines.

There are a variety of approaches to structuring separate one-semester non-
linear or optimal control systems courses using this text. Chapter 1 provides
mathematical background on the nature of solutions to nonlinear dynamical sys-
tems and on some classical analysis techniques for such systems. Depending on
the objectives of the course, this material could be covered either briefly or in
detail. Chapters 1-6 provide the basis for a nonlinear controls course. We have
found that it is also possible to cover at least some of the material in Chapter 7
as well, creating a nonlinear and optimal controls course with an emphasis on
nonlinear controls and an introduction to optimal control systems. Chapters 2,
3, and 6-9 form the basis for an optimal controls course, with the emphasis on
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optimization, calculus of variations, optimal control, and two-player differential
games.

However, by design, this text is structured to allow for combined nonlinear
and optimal controls courses. For such courses there are at least two approaches.
For an emphasis on nonlinear controls one could skip the material on differential
games, covering (perhaps only the first half of) Chapter 1 briefly, but covering
Chapters 2-7 in detail. For an emphasis on optimal controls one could skip the
second half of Chapter 4, dealing with the details of constructing Lyapunov
functions and estimating stability regions. The remaining chapters can then be
covered in detail, with Chapter 1 (or the first half only) being covered briefly.

Each chapter contains several examples and a variety of exercises to aid the
student. In addition, several sections contain numerical algorithms. In particular,
the algorithms that we present for nonlinear simulation and nonlinear param-
eter optimization form the basis for the current state-of-the-art algorithms in
these areas. We have found these and other algorithms (such as the routines
in MATLAB) to be useful, and we hope that the reader will also benefit from
them. Finally, it is hoped that this text will stimulate the reader to further study
in nonlinear and optimal control system design and to the application of these
methods to practical problems of interest.

THOMAS L. VINCENT
WALTER J. GRANTHAM

Tucson, Arizona
Pullman, Washington
June 1997
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1

NONLINEAR DYNAMICAL SYSTEMS

1.1 FUNDAMENTALS

System Models

In this text we consider nonlinear dynamical control systems of the form
x = f(x, u), (1.1-1)

where x € R™ is the n,-dimensional state vector, u € U ¢ R"™ is the n,-
dimensional control vector input (to be chosen), and (*) denotes differentiation
with respect to time 7. The set U is a control constraint set, reflecting the fact
that control inputs typically have some constraints imposed upon them, such as
bounded thrust on a rocket or bounded turning rate for a vehicle. The vector
function f(-) and its partial derivatives with respect to x and u are assumed
to be continuously differentiable functions of x and u, although the control
input function u(-) may be discontinuous, subject to certain restrictions that
we discuss shortly. In general we are concerned with developing a feedback
control law u(x) to make the system (1.1-1) behave in some specified fashion.
We assume, throughout, that the state information needed for the control law
u(x) can be measured precisely.

The dot notation used above to indicate the time derivative is not to be con-
fused with the notation (-), which is used in place of a function argument, as

1



2 NONLINEAR DYNAMICAL SYSTEMS

in f(-), when we wish to refer to the functional relationship itself rather than its
value.

Target Sets There may be several design objectives involved in the choice
of a control algorithm, but common among them is a specified target set X
in state space. For example, an objective might be to achieve a certain target
and maintain it, as in a rendezvous with an orbiting satellite, or simply to hit
a target, as in an aircraft-missile intercept problem. In all cases the underlying
basic controllability objective is one of finding a feedback control function u(x)
that will transfer the state to a specified target set X < R", usually defined by
a system of n, equalities

X = {x|g(x) = 0}, (1.1-2)

with g(x) = [g](x)mg,,g()n:)]T assumed to be continuous and continuously
differentiable. Furthemore we assume that the gradient vectors 0gi(x)/ox,i =
1, ... ng, are linearly independent on X.

Control Constraints In many applications the elements of the control vector
u may have various constraints imposed upon them, which may limit our ability
to transfer the state to the target set. For example, the magnitude of the thrust
vector, for a variable thrust rocket, would vary from zero to some upper limit
corresponding to the maximum thrust available. Also, the direction of the thrust
vector relative to the rocket would generally be limited by the gimbals on which
the exhaust nozzles are mounted.

We consider the case in which the control vector is required to satisfy a given
set of constraints

ue U, (1.1-3)

where U < R™ is a specified control constraint set. If no control constraints
are imposed, then U = R™. In the general case we allow for the possibility
that the control constraints may depend on the current state, with the control
constraint set being defined by a system of »n, inequalities

U = {u|h(x,u) 2 0}. (1.1-4)

Most often, however, we restrict the discussion to state-independent control
constraints of the form

2 = {ulh(u) > 0}, (1.1-5)

with h(u) = [A(u)--- h,,h(u)]T assumed to be continuous and continuously dif-
ferentiable. We also require that the gradient vectors oh;(u)/du satisty a reg-
ularity assumption, which is satisfied if they are linearly independent. This
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requirement is discussed in detail in Section 3.2, where we develop first-order
necessary conditions governing solutions to nonlinear constrained parameter
optimization problems.

The state vector x might also have constraints imposed upon it, such as a
minimum and maximum allowed speed for an aircraft. The case where a portion
of a trajectory runs along a state constraint boundary is considered in Section
7.7. However, for the most part, we do not consider state constraints explicitly
and, instead, assume that trajectories lie inside the region defined by the state

constraints.

Example 1.1-1: An Introductory Optimal Control Problem Consider a drag
race in which the objective is to go in minimum time from a standing start
to a full stop at the other end of the drag strip. Consider just one car, of
mass m, and let y(¢) denote the car’s position along the drag strip. Under an
applied force F(¢), which we get to pick, the equation of motion may be writ-

ten as

my = F(1).

The control input F () can be either positive (acceleration) or negative (braking)
and is bounded by the constraints

Fmin SFSFmax‘

We can convert this problem to state-space form by letting x; — y and x; = y.
With u = F/m the equations of motion become

The optimal control problem is to find u(r) to drive the system in minimum
time from the initial state x(0) = (0, 0), corresponding to y(0) = y(0) = 0, to a
target final state x(f7) = (L,0), corresponding to a full stop y(ty) = L, y(t5) = 0
at the far end of the drag strip. The performance measure to be minimized is

the travel time
i
Iy = j dt
0

and the control constraints are of the form

Upin < Uu(t) < Upmax.
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Solution techniques for optimal control problems are presented in Chapter
7. For this example, however, it is intuitively clear that the optimal control is
maximum acceleration followed by maximum braking, that is,

u(r) = Umax I 1 <1
Upin  If > 15

with the switching time f;, that is, the onset of braking, being chosen to bring
the vehicle to rest precisely at the end of the drag strip. Note that the switching
time will depend on L. A complete solution to this problem involves finding the
optimal control as a function of the current state u(x), rather than as a function
of time u(r). n

Control System Concepts

For a given specified control law u(x) and a given initial point x in state space,
we may think of the solution x(f) of (1.1-1) as a function that transfers the initial
state at time zero to some other state at time f. Our study of nonlinear control
systems focuses on the stability, controllability, and optimization properties of
this solution. In particular, we are concerned with the relationship between a
specified control law and the region of the state space that can be transferred
to a designated target set under that control law. In this context:

Stability Is concerned with determining those initial states that, under a
specified feedback control law, will be transferred to and maintained at
the specified target set.

Controllability Is concerned with determining those initial states where a
feedback control exists that will transfer the state to a specified target.

Optimality Has to do with finding the “best” feedback controller, based on
some specified performance measure, which will transfer any controllable
state to a specified target.

Note that stability implies controllability; however, controllability need not
imply stability since controllability does not require that the system be main-
tained at the target. The remainder of this chapter is devoted to a discussion of
the nature of solutions to nonlinear dynamical systems with the control input
function u(-) already specified so that the right-hand side of (1.1-1) is simply
f(x) or f(x,t). Chapter 2 removes the assumption that u(:) has been specified
and specifically deals with some of the aspects of nonlinear control systems.
Chapter 3 introduces nonlinear optimization techniques needed for the control
design methods introduced in the chapters that follow. Stability is discussed
in Chapters 4 and 5. Controllability is considered in Chapters 6 and optimal-
ity in Chapters 7 and 8. Finally, in Chapter 9, the fundamental concepts are



