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PREFACE

The subject of electromagnetic theory as formulated by James
Clerk Maxwell has become classical, and it is hardly possible to
add basically new material. Yet, the astounding developments in
physics and electrical engineering have shown clearly that the
utilization of electromagnetic phenomena has not reached the
point of saturation. For this reason, a book giving a rather com-
prehensive survey of the methods of analysis and of results ob-
tained with them should prove of value to the student and the
teacher in advanced courses as well as to the professional engineer
and the physicist in the research and development laboratory.

Now, it has become clear that the scope of electromagnetic
theory and its applications to problems of interest to the engineer,
the physicist, and the applied mathematician is much too great
to be covered in one volume of practical size. Fortunately, the
subject may be rather naturally divided into two fundamental
branches: one dealing with static electric and magnetic fields and
leading to methods of solving the family of potential equations in
various forms; the other dealing with the dynamic interaction of
electric and magnetic fields and leading to methods of solving the
family of wave equations in various forms. This division has been
followed here, and the first volume presents a survey of the methods
of mapping the distribution of static electric and magnetic fields.

Many authors who have dealt with this subject have had a
tendency to present a particular version or viewpoint, or to
emphasgize one particular method of analysis. Admirable as such
treatises may be by themselves, they are less suitable for use in
graduate courses where emphasis must lie upon guidance to a
basic understanding of different ways of reasoning and of formulat-
ing ideas. Graduate study must concern itself primarily with
basic concepts, of which there are always but a few; it should
demonstrate the connection between them through generic prin-
ciples and should lead to the critical understanding of their full
implications. Only when this aim has been reached—illuminated

vii



viii Preface

by constructive applications—can one speak of mastery of the
subject.

In order for the graduate teacher in engineering or applied
science to achieve this aim it is imperative that the basic facts
upon which theory rests and from which it receives support and
confirmation be presented in broad strokes; and it demands a
presentation not of mathematical detail of existence theorems, but
of illustrative examples which demonstrate the variety of formula-
tions and applications of the few principles, so frequently disguised
under the names of specific “laws.” Of course, as in any quantita-
tive treatment, mathematics must be used as the most precise
and most satisfying means of expression, and it is quite necessary
to recognize, and conveniently refer to, the proofs of existence and
of uniqueness of solutions which have been developed by pure
mathematicians. The burden of this great debt to the mathema-
ticians has been lightened only because of the tremendous stimula-
tion of mathematical research through the incessant need for new
solutions.

The recognition of the fundamental importance in electrical
engineering of well-founded field concepts in all advanced de-
velopment and design, as well as in research, has led to the require-
ment of a course in electromagnetic theory in nearly all major
graduate schools. Where this course is given by the Department
of Physics, mathematical theory may predominate, and where it
is given by the Department of Electrical Engineering, design
information may be emphasized. In order to combine the em-
phasis on the basic aspects common to all potential fields with a
comprehensive treatment of the available analytical and practical
methods of field plotting, this volume has been organized in a
somewhat unconventional manner. Instead of the usual vertical
division into electrostatics, magnetostatics, and electrokinetics, a
horizontal division of the subject matter is used. Thus, all the
physical relationships are established first, and the methods of
actually obtaining static field distributions are demonstrated sub-
sequently. This avoids considerable repetition and leads to a
clearer understanding of the fact that methods of analysis are in-
dependent of the specific branch of application, and that nomen-
clature is frequently accidental and by no means the essence of
knowledge. It is, of course, assumed that the reader possesses a
general knowledge of the electromagnetic field as normally gained



Preface ix

in a pertinent undergraduate course and that he is familiar with
the principles of vector notation. To be sure, the field-mapping
methods are generally formulated in specific coordinate systems as
conditioned by the geometry of the fields studied; but the vector
notation proves of definite advantage for the presentation of the
basic relations in electric, magnetic, and other fields, as treated
in the first three chapters.

Following the summary of the basic physical relations, the com-
parative physical quantities in six branches of physics and engineer-
ing are listed in table 9.1, which serves as the key for the translation
of field solutions in any one branch into solutions of analogous
problems in the other branches. Chapter 4 deals with the simple
applications of the superposition principle, such as systems of
point and line charges, line currents, and simple geometries of
spatially distributed charges and currents. For more complicated
geometries, it is frequently—though not always—simplest to map
the field distributions experimentally; the experimental methods
that have been used successfully are described in Chapter 5,
including the analogies utilized in the electrolytic trough. As al-
ternatives to the experimental procedure, graphical and numerical
field-plotting methods are taken up in Chapter 6 with emphasis
on the practical phases of actual applications; rather extensive
treatments are given of the uses of electrical and magnetic images
and of inversion—methods which are not always sufficiently em-
phasized. Next, the use of analytic functions for the solutions of
two-dimensional field problems is shown in Chapter 7, and in
particular the extremely powerful methods of “conjugate’ functions
and of conformal mapping, which are amply demonstrated.
Finally, Chapter 8 gives the mathematical treatment of three-
dimensional field problems, involving by necessity a thorough
discussion of orthogonal coordinate systems that is supported by
many illustrations which—it is hoped—will make it easier to
visualize clearly the geometrical aspects.

In order to aid a teacher in organizing the material into feasible
courses, several suggestions are offered in line with eourses which
have been taught by the author. For the first part of a course on
Electromagnetic Theory dealing with static fields one might com-
bine Chapters 1 and 2 and section 8 of Chapter 3 with selected
examples from Chapters 4 and 6 and section 25 of Chapter 7. For
a one-semester course in Applications of Functions of a Complex
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Variable one might take the material of Chapter 7, sections 25 to
28. Again, for a course in Classical Boundary Value Problems
dealing with the potential equation, one might combine section
9 with the two-dimensional applications in section 29 and Chapter
8 on three-dimensional applications. To satisfy individual re-
quirements, still other combinations are possible.

Fortunately, it is no longer necessary to apologize for the use
of the rationalized MKS system of units in a book dealing with
electromagnetic theory and its applications. There might, how-

ever, be criticism of the fact that the engineering notation v —1=j
hag been carried into the classical realm of analytic functions.
This fact should not be construed as a serious offense, for notation
is not the essence; rather, it should be taken for what it is, a
choice necessitated by the severe conflict of ¢ = vV —1 with the
symbol for the instantaneous value of current ¢ = I,, sin wt, which
is internationally standardized and customarily defined as the
imaginary part of I.e*’, with the effective (root mean square)
value I = I,,/V'2, all of which will occur frequently in Volume II.

The original suggestion of a small volume on mapping of fields
was made in 1935 by the late V. Karapetoff, Cornell University, as
Chairman of a Sub-Committee on Monographs of the Committee
on Electrical Insulation, National Research Council. A ecrude
draft of the manuscript had the benefit of his criticisms as well ag
those of J. F. H. Douglas, Marquette University, and H. Poritzky,
Schenectady. World War II interfered with the plans for this
monograph. Furthermore, the various graduate courses given
by the author at the Polytechnic Institute of Brooklyn slowly
changed the original conception of the monograph to the rather
different one of this volume. The contact with many graduate
students has had a strong educational influence upon me, and I
wish to acknowledge to them my deep appreciation. Certainly
through their persistent questioning and their gratifying response,
they have made teaching the delightful profession it is. I am
greatly indebted also to a number of my colleagues, especially to
Paul Mariotti, who assisted in the preparation of the drawings;
to Professor William R. MacLean, who read parts of the manu-
seript and made constructive suggestions; and to Professor Charles
'A. Hachemeister, who read most of the proof and made many
belpful comments. - As the preface occupies a prominent place in
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the book, I am very happy and grateful that I could enlist for its
composition the invaluable assistance of Professor Leo K. Saidla,
head of the Department of English. Finally, I take great pleasure
in acknowledging the encouragement and support which I received
from President Harry S. Rogers in writing this book.

Ernst Weber
Brooklyn, New York
April, 1950



NOTES FOR THE READER

The symbols of field quantities are tabulated in Appendix 1.

To transform the relations from the rationalized MKS unit
system to other unit systems, consult Appendix 2.

A brief review of vector analysis is given in Appendix 3.

Equations are numbered consecutively in each section; refer-
ences to equations in different sections carry the section number,
thus (5-4) means equation (4) in section 5. '

The Bibliography in Appendix 4 lists only books to which several
references are made in the text; such references, e.g. Attwood,4?
p. 243, give the page and the author, the superseript indicating
number 2 of section A of the Bibliography. '
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1. THE ELECTROSTATIC FIELD

1. FUNDAMENTAL RELATIONS
IN THE ELECTROSTATIC FIELD

From primitive observations, electrostatics divides all materials
into only two groups, conductors and insulators. The first group
is endowed with infinite mobility of electric charges such that any
redistribution occurs in an unobservably short time. The second
group has zero mobility of electric charges; any redistribution
occurs in an uninterestingly long time. Admittedly, this is a radi-
cal division, but it leads to 2 much simpler theory of the electro-
static field than would be possible otherwise. In addition, the
results are of direct practical value, and deviations in specific
cases can readily be indicated. .

The basic quantitative relationship of electrostatics is Coulomb’s
law of force action between two charges @; and Q,,

1 Qs

Fe.= 47e 12 (1)

The charges are assumed to be confined to very small regions (point
charges) so that the distance r can be identified as the distance
between centers, and ¢ is the absolute dielectric constant of the
homogeneous infinitely extended medium in which the force F, is
measured; one usually expresses ¢ = e,e,, where ¢, is the absolute
dielectric constant of free space (vacuum) (see Appendix 2 for
unit relations). The relative dielectric constant &, is the numeric
value generally found in the tables of material constants. Through-
out this volume, only isotropic dielectric media will be considered,
so that ¢ is always assumed to be independent of direction.

1 .



2 The Electrostatic Field [Ch.1

The study of electrostatics, then, is primarily concerned with
the equilibrium distribution of charges on the various conductors
comprising a particular system, under the influence of this Coulomb
force. If the charge Qs is very small, so that it causes a negligible
and only local distortion of the field of charge @, it can be used as
a probe for the exploration of the force field of charge @;. From
(1), the limit value for vanishing @,

. F, 1 G
leli?o Q2 == dme 1® @
is then interpreted as the electric intensity or field strength of
charge @;. In the case of a single positive point charge, the field
strength E has radial, outward direction, in vector notation (see
Appendix 3 for a brief review of vector analysis)
1 &

R ®)

where r/r serves to indicate the radial direction. In the case of
any general distribution of a total charge @, one can subdivide it
into small elements @,, consider each to be a point charge, and by
use of the principle of superposition obtain the resultant field
vector E at any point P

1 2 Q(x
= — 4
- Z_Zl g 4)
where the r, are the radius vectors from the charges §, to the

point P.

If one places a very small charge @ into the electric field of any
number of charges Qa, and if one is permitted to disregard the effect
of @ upon the charge distribution of the Q., then such a small charge
is again called a probe charge, since it can well serve to probe
or explore the electric field of the charge assembly by means
of the force action upon it, which is given by (2) as, QE. Left
free to move, at very low speed, this probe charge will trace the
direction of the vector E in space and the path described is called
a field line or also line of force; it has the vector E everywhere as
tangent. Defining the path element as ds, its components dz, dy,
dz must be proportional to those of E, so that

de _dy _ dz

E, E, B, 6)
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which is the differential equation of the field lines. Since for any
point charge the field lines diverge radially for positive sign and
converge radially for negative sign, there can be no closed field
lines.

Carrying a small charge Q, over any finite path PP, within

A

v

Fie. 1-1 Electrostatic Field of a Single Point Charge,

the field of a single point charge located at the origin as in Fig.
1-1 requires the work

Py Py
W=j}; F.-ds = sz E.ds 6)

Py

However, E has only radial direction, so that E-dg = dr and
hence with the use of (2)

=00 - (5 - )
TE \"1 Ta

The work is thus independent of the path ; it depends only on the
end points, and is therefore zero for a closed path. One can im-
mediately generalize this fact because of (4) and characterize the
electrostatic field as a conservative field. This means also, as seen
from (6), that the line integral of the vector E vanishes for every
closed path; all field lines emanate from, and terminate on, charges.



4 . The Electrostatic Field [Ch. 1

On the other hand, a line integral is independent of the path if
the integrand represents a complete differential. This requires
that the components of E can be identified as the derivatives of
a single, scalar function ®, the electrostatic potential. Vectorially,

E= —grad ® = —V® (N

and for the single point charge the potential function becomes at
once from the above

®)

where r is the distance from the charge center. Since (7) defines
only the derivatives of ®, any arbitrary constant could be added
in (8). For any number of point charges in a single medium e,
superposition again holds and one has

=— 3 2 ©)

subject to some arbitrary constant. Obviously, the scalar sum-
mation involved in (9) is more convenient than the vector sum
required in (4). The surfaces obtained for constant values of
potential are called equipotential surfaces and are equally as
characteristic for the field structure as the field lines; in fact, they
form with the latter an orthogonal system of surfaces and lines.
The objective of field mapping is precisely the evaluation of this
orthogonal field geometry in quantitative terms.

Returning to the concepts of conductors and insulators in the
ideal sense, it must be clear at once that conductors can have charges
only on the surface and must have constant potential throughout
their interior; any potential variation would cause a field vector
and, therefore, a force action until a surface charge distribution is
established which maintains constant potential. Conversely, any
charge in the interior of the conductor would be a source of field
lines which could be maintained only by a potential difference.
Any conductor surface is, therefore, an equipotential surface, and
the field lines terminate perpendicularly to it.

An insulator or dielectric, on the other hand, will normally not
carry any charges at all; it will serve primarily to separate charged
conductors. In certain instances, space charges produced by
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thermionic or other emission, by glow discharges, or by arcs can
exist within insulators. Assume again a single point charge Q in
a homogeneous dielectric; then (2) will give the field strength as
depending on the dielectric constant . However, the quantity
ef = D is independent of the dielectric and appears as density of
the charge were it distributed uniformly over the surface of a sphere
of radius . It is designated as a vector called dielectric flux density
(or electric displacement),

D =¢E (10)

for homogeneous dielectrics for which ¢ is a constant. Again
generalizing for many point charges, the integral of D -n over any
closed surface S gives then the sum of all charges contained within
this surface (Gauss’s dielectric flux theorem),

D.ndS = 2Q, (11)
i)

no matter what their distribution. For a continuous space charge
distribution of finite volume density p, the right-hand side of (11)
is better written as the integral over the volume 7 bounded by the
closed surface S. Transforming also the left-hand surface integral,
one has then

Jff @voyar = [[fvpar = [[foar

Applying this relation to very small dimensions one concludes that
divD=v-D=p (12)

or any space charge is a source or sink of the vector D independent
of the dielectric medium.

In isotropic dielectrics, with no space charge, div D =0
and the vectors E and D have the same direction according to
(10), so that the field lines of the vector E can also be interpreted
as deelectric flux lines, being tangential to the vector D at every
point. Since the total dielectric flux coming from a charge Q is
numerically equal to the charge, one can conceive of a chosen
number of flux lines to represent the charge value. In the case
of several charges, the flux lines will then quantitatively represent
the dielectric flux distribution. For conductors of arbitrary shape
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in a uniform dielectric, D is normal to the surface and its value is
identical with the surface density of charge,

D=D,=¢ (13)

This follows from (11) since no electric field can exist within the
conductor. The flux lines bounding a finite surface element 88
which carries a charge ¢ 68 = 8@ form a flur tube which will lead
to an element 85’ on another conductor where it delimits a charge
(—8Q) = o’ 58’. These flux tubes are a valuable aid in the vis-
ualization of the field geometry if no space charge is present (see
Fig. 3-1). ‘

2. ANALYTICAL THEORY
OF THE ELECTROSTATIC FIELD

On the basis of section 1, the general problem of electrostatics
can be formulated as the evaluation of the field distribution in
dielectrics and of the surface charge distribution on conductors
subject to certain known potential or field strength values des-
ignated as boundary conditions. Actually, potential values as
such are arbitrary, as pointed out in section 1; only potential
differences can be measured, so that, to any solution of the elec-
trostatic potential function, an arbitrary constant could be added.
Usually, one chooses some reference conductor such as ground to
be of zero potential in order to simplify numerical computations.

As already indicated, solution of electrostatic field problems
usually becomes more convenient with the use of the scalar elec-
trostatic potential. As defined in (1-7), the electric field strength
E can be expressed as the negative gradient of the potential.
Introducing this into relation (1-10) and then substituting into
(1:12), one has

VD= -V (sV®) = p 1)
or also [see Appendix 3, (21)]
V® Ve + eV?® = —p (1a)

This represents the most general differential equation for an in-
homogeneous isotropic dielectrie, wherein the variation of ¢ must be
known. Though this general case has little practical value, it
readily permits specialization for several important cases.



