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Editors” Preface to the
Manchester Physics Series

The first book in the Manchester Physics Series was published in 1970, and
other titles have been added since, with total sales world-wide of more than a
quarter of a million copies in English language editions and in translation. We
have been extremely encouraged by the response of readers, both colleagues
and students. The books have been reprintcd many times, and some of our
titles have been rewritten as new editions in order to take into account feedback
reccived from readers and to reflect the changing style and needs of under-
graduate courses.

The Manchester Physics Series is a serics of textbooks at undergraduate level.
It grew out of our experience at Manchester University Physics Department,
widely shared elsewhere, that many textbooks contain much more material than
can be accommodated in a typical undergraduate course and that this material
is only rarely so arranged as to allow the dcfinition of a shorter self-contained
course. In planning these books. we have had two objectives. One was to
produce short books: so that lecturers should find them attractive for under-
graduate courses; so that students should not be frightened off by their
encyclopaedic sizc or their price. To achieve this, we have been very selective
in the choice of topics, with the emphasis on the basic physics together with
some instructive, stimulating and useful applications. Our second aim was to
produce books which allow courses of different length and difficulty to be



X Editors’ Preface

selected, with emphasis on different applicaticns. To achieve such flexibility we
have encouraged authors to use low diagrams showing the logical connections
between different chapters and to put some topics in starred sections. These
cover more advanced and alternative material which is not required for the
understanding of later parts of each volume. Although. these books were
conceived as a series, each of them is self-contained and can be used in-
dependently of the others. Several of them are suitable for wider use in other
sciences. Each author's preface gives details about the level, prerequisites, etc.,
of his volume.

We are extremely grateful to the many students and colleagues, at Manchester
and elsewhere, whose helpful criticisms and stimulating comments have led to
many improvements. Our particular thanks go to the authors for all the work
they have done, for the many new ideas they have contnibuted, and for
discussing paisently, and often accepting, our many suggestions and requests.
We would also like to thank the publishers, John Wiley & Sons, who have been
most he'pful. ’

F. MANDL
R. J. ELLISON
January, 1987 D. J. SANDIFORD



Author’s Preface

In writing an undergraduate (cxtbook on quantum mechanics, it is gecessary
to select severely from this huge subject. Over the years, I have lectured on
quantum mechanics at all levels, from introductory undergraduate to advanced
postgraduate. Perhaps surprisingly, many of these courses shared a common
approach. It is this approach 1 am presenting here. T am concentrating on
general principles and methods. My aim is to display the structure of quantum
mechanics clearly. Students who have worked through this book should be able
to follow quamum-meéhanical arguments in hooks and (not too advanced)
papers, and to cope with simple cases themselves For this purpose, | employ
ideas and methods of wide "applicability without taking them to their fuli
generality, For example, symmetry arguments are more prominent and angular
mosmentum is treated from a more general view point than is usual at this level.

The title of this book, Quantum Mechanics rather than Quantum Physics,
reflects its emphasis on principles and methods rather than applications. Of
course, applications are essential for readers to test their understanding of the
formalism and to bring it to life T have chosen applications from atomic physics.
This is an important branch of physics since it underlies molecular and solid
state physics. Many of its ideas can, with some modifications, be taken over to
other fields such as nuclear or particle physics. 1t also has the virtue of
simplicity: we know the forces which act inside atoms. Although not primarily
a hook on atomic physics, the applications cover mainy of the importaii topics
of atomic physics.
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No knowledge of quantum mechanics is assumed in this book but the depth
of treatment presupposes a certain maturity. It would help most readers to have
met some elementary wave mechanics before, making it suitable for third-year
UK undergraduate physics courses though good second-year students should
find much of it useful and stimulating, In the US, it may be used at senior
undergraduate or first-year graduate level. It should also be of interest to
experimental research workers who require a good grasp of quantum mechanics
without the full formalism needed by the professional theorist. Many good
books cater for the latter but very few fill the gap between elementary and
advanced accounts. I take as my starting point wave functions instead of the
abstract and more general Dirac state vectors, as more appropriate to the
introductory level of this book. The elegance and formal simplicity of the Dirac
formalism easily create an illusion of understanding. Dirac state vectors are not
introduced until Chapter 5 and never used in their full generality, although an
account of the Dirac formalism is given in Chapter 12 which can be studied
with benefit any time after Chapter 3. 4

Two features facilitate the use of this book for courses of different length and
difficulty. Firstly, a flow diagram (on the inside of the front cover) shows the
logical connections of the chapters which make it possible to study chapters in
different order and to omit some topics altogether. Secondly, about a quarter
of the text forms ‘starred’ sections, and some material, insufficient to justify a
separate section, is printed on tinted background. Material distinguished in
either of these ways is not required for the understanding of material later in
the book. Typically, I have covered the material in Chapters 1 to 11, including
about half the starred sections, in 40 lectures of 50 minutes each.

The problems at the end of each chapter form an important part of the book.
Their purpose is'to enable readers to test their understanding and to introduce
some interesting physics which is enlarged on in the solutions at the end of the
book. ' '

I would like to thank the many students and colleagues who, over the years,
have influenced my understanding and teaching of quantum mechanics, and in
particular Tony Phillips and David Sandiford who read the whole manuscript
and suggested many improvements, some of a major kind. I am grateful to
Sandy Donnachie for encouraging me to write this book. My special thanks
go to my wife Betty for producing the computer-generated graphs and for much
other help with the preparation of this book. Without her support, it would
never have seen the light of day. ,

June 1991 FRANZ MANDL.
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CHAPTER

Basic concepts

vaat

As the reader is no doubt aware, classical physics fails to describe the
behaviour of atoms and sub-atomic systems. Treating an atom like a solar
system scaled down to atomic dimensions and applying classical physics to it
in no way predicts the observed phenomena. This should not be surprising.
The laws of classical physics were obtained from the study of macroscopic
systems, and we have no right to expect these laws to hold for systems many
orders of magnitude smaller. Indeed, many of the observed properties of atoms
are startlingly at variance with the predictions of classical physics and are
intuitively wholly incomprehensible.

Examples of such perplexing behaviour are:

@) Enerzy guantization Atoms possess discrete energy levels, ie. the ob-
served values of the energy of an atom do not form a continuum, as expected
! from classical physics. These discrete energy levels show up when atoms make
‘transitions between discrete atomic states with well-separated energies, for
example in the Franck-Hertz experiment or in the optical line spectra of atoms.

(i) Angular momentum quantization In the Stern-Gerlach experiment a beam
of atoms, each possessing a permanent magnetic moment, traverses an_m-
homogeneous magnetic field. Classically, one would expect the atoms to be
. deflected into a fan-like continuum of directions. In fact, they are deflected into
a discrete number of different directions only. The explanation of this phenome-
non, as we shall see, is that the component of the atom’s angular momentum’
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in the direction of the magnetic field is quantized, i.e. it can only assume certain
discrete values. '

(iii) Barrier penetration In the alpha particle decay of heavy nuclei, the alpha
particles tunnel through a potential barrier. According to classical mechanics,
the alpha particle could not escape from the nucleus as it does not have enough
kinetic energy to surmount the barrier. In penctrating the barrier, it passes
through a region in which its classical kinetic energy is negative!

From the point of view of classical physics and from our experience with
everyday objects, these phenomena appear crazy, ie. quite unintelligible. In
contrast, quantum mechanics is outstandingly successful in providing detailed
descriptions of them, in quantitative agreement with experiments. Morcover,
quantum mechanics gives correct descriptions (i.e. in agreement with obscrva-
tions) of the properties of atoms, molecules and nuclei, provided relativistic
effects are allowed for. ' :

" The difficulties of learning an& understanding quantum mechanics are largely
conceptual. We have no direct experience of atoms and molecules, and we must
not visualize them as tiny scaled-down versions of classical macroscopic objects.
To argue by analogy in this way is usually totally mislcading. These conceptual
difficulties lead -one to start a systematic account of quantum mechanics with
a more abstract mathematical formulation.

In this chapler, 1 shall develop some of the basic mathematical formalism of
quantum mechanics. In Chaptér 2 this formaiism will at once be applied to
some very simple situations to get a feeling for how it all works: to see how
the formalism is handled and to illustrate its physical interpretation. In
particular, 1 shall be able, already at this early stage, to give the quantum-
mechanical explanations of the three startling unclassical phenomena discussed
above. These examples will take us a long way lowards a quantum-mechanical
way of thinking. One builds up a sort of intuitive picture of what the
mathematics means. -

The first two chapters are seen to be complementary. The first develops the
mathematical formalism, the second shows how it is used and what it means.
A reader who has difficulties mastering Chapter 1 on first studying it should
proceed to Chapter 2 and then have another go at the first chapter. In order
to facilitate the study of Chapter 1, 1 shall start by considering the very simplest
system: a particle of mass m and no internal structure, i.e. a so-called point-
particle. Later 1 shall extend these ideas to man y-particle systems and particles
with spin. - .

1.1 THE STATE OF A SYSTEM

In quantum mechanics, the state of a system is specified by a wave function
. For a system consisting of a single point particle, Y is a complex function of
the position coordinate r of the particle and the time f: ¥ = lir, t) specifies the
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state of the system at time t. the temporal development of the wave function
is given by the-equation of motion for the system. For non-relativistic quantum
mechanics this is the Schrodinger equation (discussed in section 1.3) which
is the quantum-mechanical analogue of Newfon's equations in classical
mechanics, -

It is a fundamental assumpudSh of quanium mechanics that af/ information
about a system at a given instant of time ¢ can be derived from the wave function
. In the next section we shall see how the physical properties of a system in
the state ¢ are determined. Here | only wish to remind the reader that for a
particle in the state ydr, )

Pie, Ny d3r = [Y(r. 02 0 'r (1.1)

gives the probability that at time ¢ the particle is in a volume clement d*r at
the point r. The definition of probability at once implies the following normali-
zation condition for i -

fod

j W(r, 01 &% = 1. (1.2)

A\l

The integration in Eq. (1.2) will be over all space in general. If the particle is
confined to a certain region of space (for example, within a box of volume V)
then the range of integration in Eq. (1.2} is restricted to this region. Unless
otherwise indicated, integrals will always be over all regions of space accessibic
to the particle, i.c. over the whole configuration space of the system. A wave
function satisfying the condition (1.2) is said to be normalized or normed. Later
we shall relax the condition (1.2): we shall wish to consider wave functions
which cannot be normed in this way. For example, for the plane wave

Ytr, t) = explitk - r -~ w1)]

the normalization integral (1.2), taken over all space, diverges. For the present
we shall only consider states y which can be normed according to Eq. (1.2).

Eq. (1.1) illustrates two basic features of quantin mechanics.

First, according to Eq. (1.1) the position of a particle (at a given time ) is
not uniguely determined but only given by a probability distribution even when
the particle is in a definite state, ic. in a state fully specified according to
quantum mechanics. This is in contrast to classical mechanics where the
properties of a system in a definite state arc unigucly determined and probabili-
ties only occur for incompietely specified systems; for example, in statistical
mechanics the state of a systemr is specified by macroscopic average quantities
like temperature and density.

Sceondly, Eq. 1.1} relates the probability density P(r, 1) which s an observ-
able quantity 1o the wave function of the system, y(r. 1), which is not observable.
Nevertheless, wave functions play a central role in quantum mechanics. In
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parncular they satisfy the linear superposition principle: if §, = w (r, t) and
3 = P,(r, ¢) are two posstble states of a system, so is

V=c¥ + oy, (13)

where ¢, and ¢, are complex numbers. For the state (1. 3) Eq. (1.1) leads to the ‘
probablhty density

PO =1 = e 1y 1 + lea?1¥,1* + 2 He{ctca¥ Ty}, (14

i.e. probabilities are not additive: Eq. (1.4) contains an interference term which, -

stems from the fact that the relation (1.1) between probabilities and wave
functions is a quadratic one. This feature is typical of quantum mechanics:
observable quantities depend quadratically on the unobservable wave functions;
leading. to interference effects. Such effects.do not occur in classical mechanics.
They are, of course, characteristic of all. wave motion. For example, light
intensities are not additive whereas light amplitudes are. Analogously, one réefers
to wave functions as probability amplitudes.

From the superposition of amplitudes it follows that the relative phases of
different parts of an amplitude [e.g. of ) and ¢, in Eq. (1.3)] are all-important:
they affect critically the interference pattern. On the other hand, multiplying
all wave functions by the same phase factor e'* (where o is a real number)
" produces no observable effects.

- For electromagnetic waves there are no mterference effects if waves without
well-defined phase relationships between them are superposed. For example, in
a Young double-slit experiment an interference pattern occurs if both slits are
illuminated with light from the same source. If this source is replaced by two
incoherent light sources, each illuminating one slit only, the interference pattern
disappears and the light intensities are additive. In quantum mechanics too, we
distinguish these two cases: a system in a pure state specified by a wave function,
and a system in a mixed state, i.e. a system in a mixture of pure states without
well-defined phase relationships between them. Such a mixture cannot be
specified by a single wave function. The properties of a mixed state follow from
those of pure states, as will be illustrated later. We shall mamly be considering
pure states and, as is wsual, refer to.them simply as states. ‘

12 OBSERVABLES

In the last section 1 stated that all physncal properties of a system can be
derived from its wave furiction. We must now see how this is done.

Quantities such as the position, momentum or energy of a particle, whnch
can be measured experimentally, are called observables. In classical physncs, _
observables are represented by ordinary variables. In quantum mechanics,
obsérvables are represented by operators, i.e. by quantities-which operate on
a wave function gmng a new wave functlgm If 4 denotes an operator, A wilt-
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transform a state y(r, 1) into another state, called Ay(r, 1).* We shall have explicit
examples of operators in a moment. It is of course not possible to derive the
operators which represent observables in any fundamental way from classical
mechanics. However, a simple prescription exists which establishes the bridge
between the classical quantities and the operators. The operators corresponding
to the position coordinate r and the momentum p of a particle are, respectively,
given by o
f=r, = —ihV, (1.5)

Thus the operator # is the operation of multiplying a wave function by r:
fAr, ) = Y, 1), (1.6)
Similarly the operator p is the operation of faking the gradient of a wave
function and multiplying it by —ih:
. CpYIr, 1) = — ihVY(r, 1), .7

More generally, the operator corresponding to a function of r and p, F(¥, p), is
given by , '
-F = F(§, §) = F(r, —ihV). (1.8)

For example, in classical mechanics the energy of a point particle of mass m,
moving in a potential V(r), is given by the Hamiltonian function

1
H(r,p) = - p* + Vin),

leading to the energy operator
hZ
A=HEp=—_ V+ V). (1.9)
2m

I shall take as the fundamental connection between the observable properties
of a system and its state the following postulate:

For a system in the normed state y(r, 1), the cxpectation value at time ¢ of
‘the observable A, represented by the operator A, is given by

(A) = f WH(r, HAY(r, t) dr. ' (1.10)

" This expression is the basis of all comparisons between the predictions of
quantum mechanics and experiment. Another reason for taking it as the
cornerstone of our discussion is that it leads to or suggests many important
consequences. Before ¢oming on to these, I want to make some comments on
Eq. (1.10).

* Initially and if | want to stress that a quantity is an operator, | shall mark it by a circumflex
accent: 4 will denote the operator corresponding to the variable A. Later on, the accent will bg,
_omitted, unless doing so could, lead to conlusion. :
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Firstly, if for the ohser\utblc A we take the position coordmate T, Eq ( 1.10)
becomes

® = | o dr. (L11)

This result is in agreement with the probability distribution (1.1), which is very
comforting.

Secondly, the order of the factors in the integrand of Eq. (1.10) must, in
general, not be changed: they must be in the order shown. For example, for
the momentum operator p = —ihV we have

Y~V # VO ) = ~ iRl (VY* ) + ¢*Vi].

This is a general feature of operators: they are usually non-commuting quanti-
ties: the order of factors matters.

Thirdly and most importantly, Eq. (1.10) is a statistical statement. It says
nothing about the result of a single observation but only about the expectation
value, i.e. the mean value, obtained from many repeated measurements, Before‘
each of these measurements we must prepare the system to be in the state y(r, 7).
Averaging over the results of these measurcments. we obtain a mean value. It
is this mean value which is given by Eq. (1.10). In Chapter 3 we shall return to
the problem of how to prepare a system to be in a definite state.

1 now come on to consider some of the consequences of Eqy. (1.10). In this
section, we shall be concerned with the properties of the system at one instant
of time only. For the present we can therefore forget about the time dependence
of Eq. (1.10), treating  and A as the statc and the operator at the instant of
time considered.

Observables such as momentum or energy are real quantities. Hence the

" expectation value (1.10) must be real for any state ¢

f.//*zw d’r = jx/z(iin/t)"d"r = [Mw,p dr. (1.12)

An operator which satisfies condition {1.12) for all states v is called Hermitian
or self-adjoint. We conclude that observables must be repiesented by Hermitian
operators.

The condition (1.12) for 4 to be Hermitian is equivalent to the condition
that for any two states ¥, and ¥,

JAlle"‘id’z dArz'j(j'/ll)*lp; d’r. (1.13)

To derive this condition, we consider the state

Y=oy, + oy, (1.14)



