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PREFACE

This book presents a detailed and comprehensive treatment of laser physics and
laser theory which can serve a number of purposes for a number of different
groups. It can provide, first of all, a textbook for graduate students, or even
well-prepared seniors in science or engineering, describing in detail how lasers
work, and a bit about the applications for which lasers can be used. Problems,
references and illustrations are included throughout the book.

Second, it can also provide a solid end detailed description of laser physics
and the operational properties of lasers for the practicing engineer or scientist
who needs to learn about lasers in order to work on or with them. -

Finally, the advanced sections of this text are sufficiently detailed that this
book will provide a useful one-volume reference for the experienced laser engineer
or laser researcher’s bookshelf. The discussions of advanced laser topics, such as
optical resonators, Q-switching, mode locking, and injection locking, extend far
enough into the current state of the art to provide a working reference on these
and similar topics.' References for further reading in the recent literature are
included in nearly every section. ' :

One unique feature of this book is that it removes much of the quantum
mystique from “quantum electronics” (the generic label often applied to lasers
and laser applications). Many people think of lasers as quantum devices. In
fact, however, most of the basic concepts of laser physics, and virtually all the
practical details, are classical in nature. Lasers (and masers) of all types and in all

_frequency ranges are simply electronic devices, of great interest and importance
to the electronics engineer. " '

In the analogous case of semiconductor electronics, for exaniple', the transis-
tor is not usually thought of as a quantum device. Mental images of holes and
electrons as classical charged particles which accelerate, drift, diffuse and re-
combine are used both by semiconductor device engineers to do practical device
engineering, and by solid-state physics researchers to understand sophisticated
physics experiments. These classical concepts serve to explain and make under-
standable what is otherwise a complex quantum picture of energy bands, Bloch
‘wavefunctions, Fermi-Dirac distributions, and occupied or unoccupied quantum
states. The same simplification can be accomplished for lasers, and laser devices
can then be very well understood from a primarily classical viewpoint, with only
limited appeals to quantum terms or concepts. '

The approach in this book is to build primarily upon the classical electron
oscillator model, appropriately extended with a descriptive picture of atomic en-
ergy levels and level populations, in order to provide a fully accurate, detailed
and physically meaningful understanding of lasers. This can be accompilished
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PREFACE

without requiring a previous formal background in quantum theory, and also
without attempting to teach an abbreviated and inadequate course in this sub-
ject on the spot. A thorough understanding of laser devices is readily available
through this book, in terms of classical and descriptively quantum-mechanical
concepts, without a prior course in quantum theory.

I have also attempted to review, at least briefly, relevant and necessary back-
ground material for each successive topic in each section of this book. Students
will find the material most understandable, however, if they come to the book
with some background in electromagnetic theory, including Maxwell’s equations;
some understanding of the concept of electromagnetic polarization in an atomic
medium; and some familiarity with the fundamentals of electromagnetic wave
propagation. An undergraduate-level background in opties and in Fourier trans-
form concepts will certainly help; and although familiarity with quantum theory
is not required, the student must have at least enough introduction to atomic
physics to be prepared to accept that atoms do have quantum properties, espe-
cially quantum energy levels and transitions between these levels.

The discussions in this book begin with simple physical descriptions and
then go into considerable analytical detail on the stimulated transition process
in atoms and molecules; the basic amplification and oscillation processes in laser
devices; the analysis and design of laser beams and resonators; and the com-
plexities of laser dynamics (including spiking, Q-switching, mode locking, and
injection locking) common to all types of lasers. We illustrate the general princi-
ples with specific examples from a number of important common laser systems,
although this book does not attempt to provide a detailed handbook of different
laser systems. Extensive references to the current literature will, however, guide
the reader to this kind of information. ~

There is obviously a large amount of material in this book. The author has
taught an introductory one-quarter “breadth” course on basic laser concepts for
engineering and applied physics students using most of the material from the
first part ®f the book on “Basic Laser Physics” (see the Table of Contents),
especially Chapters 1-4, 6-8 and 11-13. A second-quarter “depth” course then
adds more advanced material from Chapters 5, 9, 10, 30, 31 and selected sections

* from Chapters 24-29. A complete course on optical beams and resonators can

be taught from Chapters 14 through 23.

I am very much indebted to many colleagues for help during the many years
while this book was being written. I wish it were possible to thank by name all the
students im my classes and my research group who lived through too many years
of drafts and class notes. Special thanks must go to Judy Clark, who became
a TgX and computer expert and did so much of the editing and manuscript
preparation; to the Air Force Office of Scientific Research for supporting my
laser research activities over many years; to Stanford University, and especially
to Donald Kauth, for providing the environment, and the computerized text
preparation tools, in which this book could be written; and to the Alexander
von Humboldt Foundation and the Max Planck Institute for Quantum Optics in
Munich, who supplied the opportunity for the manuscript at last to be completed.
Finally, there are my wife Jeannie, and my family, who made it all worthwhile.

Anthony E. Siegman




UNITS AND NOTATION

The units and dimensions in this book are almost entirely mks, or SI, except for
a few concessions to long-established habits such as expressing atomic densities
N in atoms/cm® and cross sections o in cm®. Such non-mks values should of
course always be converted to mks units before plugging them into formulas.

In general, lower-case symbols in bold-face type such as E(r,t), b(r,t),
h(r, t), and so on refer to electromagnetic field quantities as real vector functions
of space and time, while £(r,t), b(r,t), K(r,t), etc., refer to the scalar counter-
parts of the same quantities. Bold-face capital letters E, B, H, etc., refer to the
complex phasor amplitudes of the same vector quantities with e""‘ variations,
while E, B, H, etc., are the complex phasor amplitudes of the corresponding
scalars. As 1llustrated here, complex quantities are sometimes, but not always,
identified by a superposed tilde.

In writing sinusoidal signals and waves, waves propagatmg toward positive 2z
are written in the “electrical engineer’s form” of exp j(wt — Bz) rather than the

“physicist’s form” of exp i(kz —vt). (This of course does not imply that i = —j!)
Linewidths Af, Aw, A) and pulsewidths At, 7 or T, unless specifically noted,
always mean the full width at half maximum (FWHM)

In contrast to much of the published literature, an attenuation or gain co-
efficient @ in this book always refers to an amplitude or voltage growth rate,
such as for example £(z) = £(0)exp +az. Signal powers or intensities in this
book, therefore, always grow or attenuate thh exponential growth coeffi¢ients
2a rather than o.
~ The notation in the book has a few other minor idiosyncrasies. First, we are
often concerned with signals and waves inside laser crystals, in which the host
crystal itself has a dielectric constant € and an index of refraction n even without
any atomic transition present. To take the dielectric properties of a possible host
medium into account, the symbols ¢, ¢ and A in formulas in this text always refer
to the dielectric permeability, velocity of light and wavelength of the radiation
in the dielectric medium if there is one. We then use ¢y and A in the few cases
where it is necessary to refer to these same quantities specifically in vacuum.
The advantage of this choice is that all our formulas involving ¢, ¢ and A remain
correct with or without a dielectric host medium, without needing to clutter
these formulas with different powers of the refractive index n.

The other special convention peculiar to this book is the nonstandard manner
in which we define the complex susceptibility %, associated with a resonant
atomic transition. In brief, we define the linear relationship between the induced
polarization Pat on an atomic transition in a laser medium and the electric field
E that produces this polarization by the convention that P,; = %,.¢E where €
is the dielectric permeability of the host laser crystal rather than the vacuum
value €9 usually used in this definition. The merits of this nonstandard approach
are argued in Chapter 2.



LIST OF SYMBOLS

Throughout this text we attenpt Yo follow a consistent notation for subscripts,
using the conventions that:

a=

o
i

eithet atomic, as in atomic ‘ransition frequency w, or homogeneous
atomic linewidth Aw,; ot sdmetimes absorption, as in absorption coef-

ficient ay,.

cavity, as in cavity decay time 7. or cavity ehergy decay rate vy.; also,

carrier, a8 in carrier frequency w,.

doppier, as in doppler broadening with linewidth Awd, and by extension
any other kind of inhomogeneous broadening.

external, as in cavity external coupling factor &, or external decay rate
ve; also, sometimes, effective, as in effective lifetime or pumping rate.

molecular or maser, generally used to refer to atomic or maser or laser
quantities, e.g., laser gain coefficient a,, or laser growth rate ..
ohmic, referring generally to internal ohuic and/or scattering losses, as
in the ohmic loss coefficient ag or ohinic cavity decay rate yo. Also used
in several other ways, generally to indicate an initial value; a thermal
equilibrium value; a small-signal or unsaturated value; a midband value;
or a free-space (vacuum) values, as in &g, g, and Ag.

pump, as in pumping rate R, or pump transition probability W,.

We also frequently use az = axial; avail = available; circ = circulating;
eff = effective; eq & equivalent; tnc = incident; opt = optimum; out
= output; refl = reflected; rt = round-trip; sat = saturation; sp =
spontaneous or spiking; ss = small-signal or steady-atate and th =
threshold as compound subscripts.

A partial list of symbols used in the text then includes:

a =

R
i
o

R
e
il

&, 6"

[l

= second derivative of a(w) with respect to w

exponential gain or loss coefficient for amplitude (or voliage); also, am-
plitude parameter for gaussian optical pulse

complex amplitude of n-th order Hermite-gaussian mode

= maser/laser /molecular gain (or loss) coefficier -

ohmic and/for scatiering loss coefficient

= propagation.sonstant, including host dielectric effects, but nswally not

loss or atomic transition effects; also, chirp parameter for gaussian
pulse; relaxation-time ratio in multilevel laser pumping systems; Bokbr
magneton ‘

= Nuclear magneton

first and second derivatives of B(w) with respect to w

= added propagatzon constant term due to reactive part of an atomic

transition

b BN AP e
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LIST OF SYMBOLS

in general, an energy or pepulation decay rate

decay rate for cavity stored energy (= 1/7.)

total downward population decay rate from energy level E;
population detay rate from upper level E; to lower level E,

nongadiative part of total decay rate for a classical oscillator or an.
atomic transition

radiatjre deeay rate for classical electron oscillator or real atomic tran-
sition

complex eigenvalue for optical resonator or lensguide

complex eigenvalue for mn-th order transverse eigenmode

a + j = complex propagation constant for an optical wave

a — jB8 = complex gaussian pulse parameter

coefficient of (logazithmic) fractional power gain or loss, per bounce or
per round trip

total (roundetrig)} pewer loss coeﬂic1ent due to cav1ty losses plus exter-
nal coupling

cavity loss coefficient due to external coupling only

power gain coeffigient due to laser atoms

canity loss coefficientdue to internal (ohmic) losses only

AM or FM medulation index

dielectric permeability of a medium

dielectric permeability of free space (vacuum)

efficiencies of various sorts; also, characteristic unpeda.nce \/7 of a
dielectric medium

characteriski¢ impedance of free space (vacuum)

optlcal waveength (in a medium); also, eigenvalue for optical ray matrix
optical wavelength in vacuum

eigenvalues of periodic lensguide or ABC D matrix

spatial period of optical grating

electric or magnetic dipole moment also, magnetic permeability of a
magnetic medium

electric dipole moment

magnetic dipole moment

magnetic permeability of free space

amplitude reflection or transmission of optical mirror or beamsplitter;
also, distance between two points; p(w) = cavity mode density

complex amplitude neﬂect:on or transmission of optical mirror or beam-
splitter

ohmic conductivity; also, transition cross section, standard deviation
cross section for stimulated transition from level E; to E;

lifetime or decay time

cavity dggay time due to all internal losses plus external coupling
total lifetime (energy decay time) for energy level E;

phase shifts and phase angles of various sorts

Scl_lriidinger wave function
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LIST OF SYMBOLS

Guoy phase shift for an mn-th order gaussian beam
susceptibility of a dielectric or magnetic medium = x’ + jx”
real and imaginary parts of x

susceptibility of a resonant atomic transition

electric (magnetic) dipole susceptibilities

frequency (in radians/second)

= in general, a frequency that has been shifted, pulled, or modified in

some small manner

= atomic transition frequency

a beat frequency (between two signals)

cavity or circuit resonant frequency; also, carrier frequency
instantaneous frequency of a phase-modulated signal
generally, a modulation frequency of some sort
resonant frequency of ¢g-th axial mode

Rabi frequency on an atemic transition

Spiking or relaxation-oscillation frequency

frequency pulling of axial mode frequency w,
linewidth, or frequency tuning, in radians/sec
atomic linewidth (FWHM)nin radians/sec

axial mode spacing between adjacent axial modes
solid angle; also, radian frequency or rotation rate

= normalized wave amplitudes

—
=

—

N

I

area
Einstein A coefficient on E; — E; transition
matrix elements for optical ray matrix or paraxial optical system

magnetic field as real function of space and time; also, confocal param-
eter for gaussian beam

magnetic field as real vector function of space and time; also, confocal
parameter for gaussian beam

magnetic field; also, pressure-broadening coefficient or “B integral® for

nonlinear interaction

phasor amplitude of sinusoidal B field

velocity of light in a material medium

velocity of light in vacuum

in general, an unspecified constant; also, electrical capacitance; coupling
coefficient in mode competition analysis

complex conjugate (of preceding term)

classical electron oscillator model

electric displacement as real function of space and time; also, distance
or displacement )

electric displacement as real vector function of space and time
dimensionless dispersion parameter |

phasor amplitude of sinusoidal eleetric displacement

magnitude of electronic charge

electric field; usually, real field £(z,t) as function of space and time

xix



LIST OF SYMBOLS

9(v), g(w)
9

9ir 95

gr

grt

G

GdB

h

mla;r:'ar

N

phasor amplitude of sinusoidal E field

amplitude of n-th mode in a normal mode expansion
frequéncy in Hz (= cycles/sec); also, lens focal length
lens f-number

= linewidth, or frequency detuning, in Hz

i

il

il

i

H

]

n

li

i

atomic transition linewidth (FWHM) in Hz

doppler or inhomogeneous linewidth (FWHM) in Hz

oscillator strength foi an atomic transition; also, lens f number
finesse, of interferometer or laser cavity

Fresnel integral function

oscillator strength of E; — E; atomic transition = Yrad,ji/3Vrad,ceo

amplitude (or voltage) gain, as a number; also, gaussian stable resonator
parameter; magnetic resonance g value

normalized lineshapes

complex amplitude {or voltage) gain, as a (complex) number
degeneracy factors for quantum energy levels E; and E;

nuclear magnetic resonance g value

round-trip voltage gain inside an optical cavity

power gain (as a number); also, electrical conductance

power gain in decibels

magnetic intensity as real function of space and time; also, Planck’s
constant

h/2=n

magnetic i field as real vector function of space and time
n-th order polynomial function

phasor amplitude of sinusoidal H field

n-th order hermite polynomial

intensity (power/unit area) of an optical wave; also sometitnes, loosely,
total power in the wave

modified Bessel function of order m _

amplifier (or absorber) saturation intensity ,

current density as real function of space and time; also, v/—1
current density as real vector functien of space and time

“phasor amplitude of sinusoidal current density

Bessel function of order m
propagation vector of optical wave = w/c

scalar constant in various equations (especially coupled rat.e equatlons)
also, spring constant in classical osciliator mode}

length; electrical inductance

electron mass; also, magnetization (magnetic dipole moment per unit
volume) as real function of time

magnetization (magnetic dipole moment per unit volume) as real vector
function of space and time

half-trace parameter for ray or ABC D matrix
proton mass; molecular mass
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LIST OF SYIiMBOLS

phasor amplitude of sinusoidal magnetic dipole moment

optical ray matrix or ABC D matrix

refractive index; also, phbton number n(t) (number of photons per cav-
ity mode)

optical Kerr coefficient ngg or nyy

= atomic number or level population; usually interpreted as atoms per

unit volume, sometimes as total number of atoms

population difference, or population difference density, on an atomic
transition (AN;; = N; — N;)

Fresnel number a?/LA for an optical beam or resonator

collimated Fresnel number for an unstable optical resonator
equivalent Fresnel number for an unstable optical resonator
population, or population density, in atomic energy level E;
perimeter, period or round-trip path length, for cavities or periodic
lensguides; also, electric polarization (electric dipole moment per unit
volurue) as real function of time, and laser mode density or mode num-
ber

electric polarization (electric dipole moment per unit volume) as real
vector function of space and time

path length (round-trip) through an atomic or laser gain medium
power, in watts; also, pressure, in torr ' '

polarization driving term for n-th order cavity mode in coupled-mode
expansion

= phasor amplitude of sinusoidal electric polarization

1

axial mode index
complex gaussian beam parameter or complex radtus of curvature

= reduced gaussian beam parameter, §/n

amplitude reflectivity of mirror or beamsplitter; also, dimensionless or
normalized pumping rate; displacement off axis of optical ray

= reduced slope ndr/dz for optical ray

I

shorthand for spatial coordinates z,y, 2

= complex scattering matrix element, or mirror ot beamsplitter reflection

W

coefficient

dimensionless pumping rate or inversion ratio, relative to threshold
pumping rate or threshold inversion density

volume element, dV or dz dy dz

power reflectivity of mirror or beamsplitter (= |r|?); also, electrical
resistance; radius of curvature for mirror, dielectric interface, or optical
wave

reduced radius of curvature R/n.

pumping rate in atoms per second and, usually, per unit volume
spatial frequency (cycles/unit length) I

shorthand for transverse spatial coordinates z, y

transverse area element dA or dz dy

multiport scattering matrix (matrix elements S;;)
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time; also, amplitude transmission through mirror, beamsplitter, or
light modulator

complex amplitude transmission coefficient through mirror, beamsplit-
ter or light modulator

complex scattering matrix element, or mirror/beamsplitter transmis-
sion coeflicient

power transmission of mirror or beamsplitter (= |[t[?); also, cavity
round-trip transit time, or temperature (K)

dimensionless susceptibility tensor

laser oscillation build-up time

temperature of “nonradiative” surroundings

temperature of radiative surroundings

energy decay time, population recovery time, longitudinal relaxation
time

dephasing time, collision time, transverse relaxation time

effective T, or dephasing time for inhomogeneous (gaussian) transition
complex {and usually normalized) optical wave amplitude

energy or, more commonly, energy density (energy per unit volume)
energy density in a collection of atoms or atomic energy level popula-

" tions

]

energy density of blackbody radiation

velocity of an atom, an electron, or a wave

complex spot size for Hermite-gaussian modes

group velocity

phase velocity

volume (of a cavity mode or field pattern)

gaussian spot size parameter (1/e amplitude point)

total relaxation transition probability (per atom, per second) from level
E; to level E;

stimulated transition probability (per atom, per second) from level E;
to level E; ‘

pumping transition probability (per atom, per second)

displacement of electronic charge in classical electron oscillator model
dispersion length for dispersive pulse broadening

Rayleigh range for a gaussian or collimated optical beam

atomic number

dimensionless population saturation factor, with values between 2* = 1
(lower level empties out rapidly) and 2* = 2 (lower level bottlenecked)

dimensionless polarization overlap factor for atomic interactions, with
numerical valué between 0 and 3
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