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PREFACE

balE 0

Why study geometry?

This book aims to introduce the beginning or working physicist to a
wide range of analytic tools which have their origin in differential geometry and
which have recently found increasing use in theoretical physics. It is not uncom-
mon today for a physicist’s mathematical education to ignore all but the sim-
plest geometrical ideas, despite the fact that young physicists are encouraged to
develop mental ‘pictures’ and ‘intuition’ appropriate to physical phenomena.
Tbés curious neglect of ‘pictures’ of one’s mathematical tools may be seen as the
outcome of a gradual evolution over many centuries. Geometry was certainly
exttemely important to ancient and medieval natural philosophers; it was in
geometrical terms that Ptolemy, Copernicus, Kepler, and Galileo all expressed
their thinking. But when Descartes introduced coordinates into Euclidean
geometry, he showed that the study of geometry could be regarded as an appli-
cation of algrebra. Since then, the importance of the study of geometry in the
education of scientists has steadily declined, so that at present a university
vndergraduate physicist or applied mathematician is not likely to encounter
much geometry at all.

One reason for this suggests itself immediately: the relatively simple geometry
of the three-dimensional Euclidean world that the nineteenth-century physicist
believed he lived in can be mastered quickly, while learning the great diversity of
analytic techniques that must be used to solve the differential equations of
physics makes very heavy demands on the student’s time. Another reason must
surely be that these analytic techniques were developed at least partly in
response to the profound realization by physicists that the laws of nature could
‘be expressed as differential equations, and this led most mathematical physicists
genuinely to neglect geometry until relatively recently.

However, two developments in this century have markedly altered the balance
between geometry and analysis in the twentieth-century physicist’s outloook.
The first is the development of the theory of relativity, according to which the
Euclidean three-space of the nineteenth-century physicist is only an approxi-
mation to the correct description of the physical world. The second development,
which is only beginning to have an impact, is the realization by twentieth-century
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by Cartan, that the relation between geometry and analysis
ofi the one hand analysis may be the foundation of the study
{ on the other hand the study of geometry leads naturally to the
it of certain analytic tools (such as the Lie derivative and the exterior
#nd certain concepts (such as the manifold, the fiber bundle, and the
ication of vectors with derivatives) that have great power in applications
- of analysis. In the modern view, geometry remains subsidiary to analysis. For
example, the basic concept of differential geometry, the differentiable manifold,
is defined in terms of real numbers and differentiable functipns. But this is no
disadvantage: it means that concepts from analysis can be expressed geometri-
cally, and this has considerable heuristic power.
Because it has developed this intimate connection between geometrical and
~ analytic ideas, modern differential geometry has become more and more import-
ant in theoretical physics, where it-hasled to a greater simplicity in the math-
ematics and a more fundamental understanding of the physics. This revolution
has affected not only special and general relativity, the two theories whose con-
tent is most obviously geometrical, but other fields where the geometry involved
is not always that of physical space but rather of a more abstract space of vari-
ables: electromagnetism, therm\odynamics, Hamiltonian theory, fluid dynamics,
and elementary particle physics.

Aims of this book

In this book I want to introduce the reader to some of the more
important notions of twentiethcentury differential geometry, trying always to
use that geometrical or ‘pictorial’ way of thinking that is usually so helpful in
developing a physicist’s intuitior:. The book attempts to teach mathematics, not
physics. I have tried to include a wide range of applications of this mathematics
to branches of physics which are familiar to most advanced undergraduates. I
hope these examples will domore than illustrate the mathematics: the new
mathematical formulation of familiar ideas will, if I have been successful, give

| the reader a deeper understanding of the physics.

I will discuss the background I have assumed of the reader in more detail
below, but here it may be helpful to givia brief list of some of the ‘familiar’
ideas which are seen in a new light in this book: vectors. tensors, inner products,
special relativity, spherical harmonics and the rotation group {and angular-
momentum operators), conservation laws, volumes, theory of integration, curl
and cross-product, determinants of niatrices, partial differential equations and
their integrability conditions, Gauss’ and Stokes’ integral theorems of vector

~ caleulus, thermodynamics of simple systems, Caratheodory’s theorem (and the
second law of thermodynamics), Hamiltoniar. systems in phase space, Maxwell’s
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- equations, fluid dynamics (including the laws governing the conservation of
circulation), vector calculus in curvilinear coordinate systems, and the quantum
thpory of a charged scalar field. Besides these more or less familiar subjects,

" thete are a few others which are not usually taught at undergraduate level but

" which most readers would certainly have heard of the theory of Lie groups and
symmetry, open and closed cosmologies, Riemannian geometry, and gauge
théories of physics. That all of these subjects can be studied by the methods of
differential geometry is an indication of the importance differential geometry is

ﬁkrﬂy‘to have in theoretical physics in the future.

I believe-it is important for the reader to develop a pictorial way of thinking
and a feeling for the ‘naturalness’ of certain geometrical tools in certain situ-

. ations. To this end I emphasize repeatedly the idea that tensors are geometrical

objects, defined independently of any coordinate system. The role played by

components and coordinate transformations is submerged into a secondary
position: whenever possible I write equations without indices, to emphasize the
coordinate-independence of the operations. I have made no attempt to present
the material in a strictly rigorous or axiomatic way, and I have had to ignore
many aspects of our subject which a mathematician would regard as funda-
mental. I do, of course, give proofs of all but a handful of the most important
results (references for the exceptions are provided), but I have tried wherever
possible to make the main geometrical ideas in the proof stand out clearly from
the background of manipulation. I want to show the beauty, elegance, and
naturalness of the mathematics with the minimum of obscuration.

How to use this book

The first chapter contains a review of the sort of elementary math-
ematics assumed of the reader plus a short introduction to some concepts, par-
ticularly in topology, which undergraduates may not be familiar with. The next
chapters are the core of the book: they introduce tensors, Lie derivatives, and
differential forms. Scattered through these chapters are s f e applications, but
most of the physical applications are left for systematic treatment in chapter 5.
The final chapter, on Riemannian geometry, is more advanced and makes con-
tact with areas of particle physics and general relativity in which differential
geometry is an everyday tool.

The material in this book should be suitable for a one-term\course, provided
the lecturer exercises some selection in the most difficult areas| It should also be
possible to teach the most important points as a unit of, say, ten lectures in an
advanced course on mathematical methods. I have taught such a unit to graduate
students, concentrating mainly on §§ 2.1-2.3, 2.5-2.8, 2.12-2.14, 2.16, 2.17,
2.19-2.28,3.1-3.13,4.1-4.6, 4.8, 4.14-4.18, 4.20-4.23,4.25,4.26, 5.1, 5.2,
5.4-5.7,and 5.15-5.18. I hope lecturers will experiment with their own choices
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of material, especially because there are many people for whom geometrical
reasoning is easier and more natural than purely analytic reasoning, and for them
an early exposure to geometrical ideas can only be helpful. As a general guide to
selecting material, section headings within chapters are printed in two different
styles. Fundamental material is marked by boldface headings, while more
advanced or supplementary topics are marked by boldface italics. All of the last
chapter falls into this category. The same convention of type-face distinguishes.
those exercises which are central to the development of the mathematics from
those which are peripheral.

The exercises form an integral part of the book. They are inserted in the
middle of the text, and they are designed to be worked when they are first
encountered. Usually the text after an exercise will assume that the reader has
worked and understood the exercise. The reader who does not have the time to
work an exercise should nevertheless read it and try to understand its result.
Hints and some solutions will be found at the end of the book.

Background assumed of the reader

Most of'this book should be understandable to an advanced under-
graduate or beginning graduate student in theoretical physics or applied math-
ematics. It presupposes reasonable facility with vector calculus, calculus of many
variables, matrix algebra (including eigenvectors and determinants), and a little
operator theory of the sort one learns in elementary quantum mechanics. The
physical applications are drawn from a variety of fields, and not everyone will
feel at home with them all. It should be possible to skip many sections on
physics without undue loss of continuity, but it would probably be unrealistic
to attempt this book without some familiarity with classical mechanics, special
relativity, and electromagnetism. The bibliography.at the end of chapter 1 lists
some books which provide suitable background.

1 want to acknowledge my debt to the many people, both colleagues and
teachers, who have helped me to appreciate the beauty of differential geometry
and understand its usefulness in physics. I am especially indebted to Kip Thorne,
Rafael Sorkin, John Friedman, and Frank Estabrook. I also want to thank the
first two and many patient students at University College, Cardiff, for their com-
ments on earlier versions of this book. Two of my students, Neil Comins and
Brian Wade, deserve special mention for their careful and constructive sug-
gestions, It is also a pleasure to thank Suzanne Ball, Jane Owen, and Margaret
Wilkinson for their fast and accurate typing of the manuscript through all its
revisions. Finally, I thank my wife for her patience and encouragement, par-
ticularly during the last few hectic months.

Cardiff, 30 June 1979 A Bernard Schutz
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1 SOME BASIC MATHEMATICS

This chapter reviews the elementary mathematics upon which the geometrical
development of later chapters relies. Most of it should be familiar to most
readers, but we begin with two topics, topology and mappings, which many
readers may find unfamiliar. The principal reason for including them is to enable
us to define precisely what is meant by a manifold, which we do early in chdpter
2. Readers to whom topology is unfamiliar may wish to skip the first two
sections initially and refer back to them only after chipter 2 has given them suf-
ficient motivation.

1.1 The space R™ and its topology \
The space R" is the usual n-dimensional space of vector algebra: a point
in R" is a sequence of n real numbers (x4, X2, . . . , X,), also called akh n-tuple of

two points can be subdivided into arbitrarily many pieces that also join points of
R". These notions are in contrast to properties we would ascribe to, say, a lattice,
such as the set of all n-tuples of integers (i), i3, . . . , in). The concept of continu-
ity in R is'made precise in the study of its topology . The word ‘topology’ has

. two distinct meanings in mathematics. The one we are discussing now may be

called local topology. The other is global topology, which is the study of large-
scale features of the space, such as those which distinguish the sphere from the
torus. We shall have something to say about global topology later, particularly
in the chapter on differential forms. But first we must take a brief look at local
topology.

The fundamental concept is that of a neighborhood of a point in R", which
we can define after introducing a distance function between any two points
X=0y,...,x,)andy=(y,...,¥,) of R":

dx,y) = [(er =31 + (G2 —y2)* + ...+ x, —,)? Y2 (1.1

A neighborhood of radius r of the point x in R" is the set of points N,(x) whose
distance from x is less than 7. For R? this is illustrated in figure 1.1. The
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continuity of the space can now be more precisely defined by, considering very
small neighborhoods. A set of points of R" is discrete if each point has a neigh-
borhood which contains no other points of the set. Clearly R” itself is not dis-
crete. A set of points S of R” is said to be open if every point x in § has a neigh-
borhood entirely contained in S. Clearly, discrete sets are not open, and from
now on we will have no use for discrete sets. A simple example of an open set in
R! (also known simply as R) is all points x for which @ <x <5 for two real
numbers a and b. An important thing to understand is that the set of points for
which a < x < b is not open, because the point x =z does not have a neighbor-
hood entirely contained in the set: some points of any neighborhood of x =a
must be less than a and therefore outside the set.This is illustrated in figure 1.2.
This is, of course, a very general property: any reasonable ‘chunk’ of R™ will be
open if we do not include the boundary of the chunk in the set.

Fig. 1.1. The distance function d(x, y) defines a neighborhood in R?
which is the interior of the disc bounded by the circle of radius r. The
circle itself is not part of this neighborhood.

Xq4

X1

Fig. 1.2. (@) Any neighborhood of the point x = a must include points
to the left of a, while (b) any point to the right of 4 has a neighbor-
hood entirely to the right of a.
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a
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The idea that a line joining any two points of R" can be infinitely subdivided
can be made more precise by saying that any two points of R" have neighbor-
hoods which do not intersect. (They will also have some neighborhoods which
do intersect, but if we choose small enough neighborhoods we can make them
disjoint.) This is called the Hausdorff property of R™. It is possible to construct
non-Hausdorff spaces, but for our purposes they are artificial and we shall ignore
them. .

Notice that we have used the distance function d(x, y) to define neighbor-
hoods and thereby open sets. We say that d(x, y) has induced a topology on R".
By this we mean that it has enabled us to define open sets of R"™ which have the
properties:

(Ti) if O and O, are open, so is their intersection, 0; N 0,;and

(Tii) the union of any collection (possibly infinite in number) of open sets is

open.

In order to make (Ti) apply to all open sets of R”, we define the empty set (or
null set) to be open, and in order to make (Tii) work we likewise define R" itself
to be open. (In more advanced treatments one defines a topological space to be a
collection of points with a definition of open sets satisfying (Ti) and (Tii). In
this sense the distance function d(x, y) has enabled us to make R" into a topo-
logical space.)

At this point we must ask whether the induced topology depends very much
on the precise form of d(x, y). Suppose, for example, that we use a different
distance function

d'(x,y) = [4xy —y1)? + 0.0k —y2)* + ...+ (e —yn)' 1V (1.2)
This also defines neighborhoods and open sets, as shown in figure 1.3 for R%,

Fig. 1.3. The distance function d’'(x, y) = [4(x] — ¥1)* + (xo —¥2)*]'?
defines a neighborhood in R? which is the interior of the disc bounded
by the ellipse 4(x; — y1)* + (x3 —y3)? = r?. Asin figure 1.1, the
ellipse itself is not in the neighborhood.

XZTA
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The key point is that any set which is open according to d'(x, y) is also open
according to d(x, y), and vice versa. The proof of this is not hard, and it rests on
the fact that any given d-type neighborhood of x contains a d'-type neighbor-
hood entirely within it, and vice versa. That is, given a d-type neighborhood of
radius e about x, one can choose a number & so small that a d"-type neighbor-
hood of x of radius § is entirely within the original (see figure 1.4). So we can
conclude that if a set is open as defined by d(x, y) it is also open as defined by
d'(x, y), and vice versa. We therefore say that both d and d' induce the same
topology on R", The reader may wish to show that the distance functidns

Fig. 1.4. In R? a d-neighborhood of radius € (bounded by the circle)
entirely contains a d'-neighborhood of radius § (bounded by the
ellipse defined in figure 1.3) if & <e. If & > 2¢ the inclusion is reversed.

X'zf

Fig. 1.5. (@) In R? the distance function d" has circular neighborhoods
smaller for a given radius r, than those of d. (¢) The neighborhoods of
@"" are bounded by squares of side 27.

x4 4t

1

|

4
v

,\'1 X 1

(a} (b)
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d”(x’ Y) = exp [d(x: Y)] -1, (13)

d”!(x: y) = maximum (Ux1 =1l 1x2 = yal, ooy 1xn —ynl) (1.4)
also induce the same topology. Their neighborhoods in R? are illustrated in -
figure 1.5. So although we began with the usual Euclidean distance function
d(x, y), the topology we have defined is not very dependent on the form of d.
This is called the ‘natural’ topology of R". Topology is a more ‘primitive’ con-
cept than distance. We do not need to know the actual distance between points,
since many different distance definitions will do. What we need is only a notion
that the distance between points can be made arbitrarily small and that no two
distinct points have zero distance between them.

Our definition of a neighborhood was tied to a particular distance function,
but because the topology of a manifold is more general than any particular dis-
tance function the word ‘neighborhood’ is often used in a different sense. We
will often find it convenient to let a neighborhood of a point x be any set con-
téining an open set containing x. It should always be clear from the context
which sense of ‘neighborhood’ is intended.

1.2 Mappings

The concept of a mappmg, simple though it is, will be so useful later
that it is well to spend some time discussing it. A map f from a space M to a
space N is a rule which associates with an element x of M a unique element y of
N. It is useful to keep in one’s mind a general picture of a map, such as figure
1.6. The simplest example of a map is an ordinary real-valued function on R.
The function f associates a point x in R with a point f(x) also in R. (This illus-
trates the fact that the spaces M and NV need not be distinct.) Such a map is.
shown in the usual way in figure 1.7. Notice that the map gives a unique f(x) for
every x, but not necessarily a unique x for every f(x). In the figure, both x, and

Fig. 1.6. A pictorial representation of the mapping f: M = N showing
x B f(x).
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X map into the same value. Such a map is called many-ro-one. More generally, if
f maps M to N then for any set S in M the elements in NV mapped from points of
S form a set T called the image of S under f, denoted by f(S). Conversely, the
set S is called the inverse image of T, denoted by f~(T). If the map is many-to-
one then the inverse image of a single point of NV is not a single point of M, so
there is no map f ™ from N to M, since every map must have a unique image. So
in general the symbol f ~'(T") must be read as a single symbol: it is not the image
of T under a map f ! but simply a set called f (7). On the other hand, if evasy
point in f(S) has a unique inverse image point in S, then fis said to be one-to-
one (abbreviated 1-1) and there does exist another 1-1 map f 71, called the
inverse of f, which maps the image of M to M. These concepts, if not the words
used to describe them, are familiar from elementary calculus. The function

f(x) = sin x is many-to-one, since f(x) = f(x + 2n7) = f((2n + )7 — x) for any
integer n. Therefore, a true inverse function does not exist. The usual inverse
function, arcsin y or sin™! y, is obtained by restricting the original sine function
to the ‘principal’ values, — /2 <x < /2, on which it is indeed 1-1 and invert-
ible. :

Another example of a 1-1 map is a geographical map of part of the Earth’s
surface: this maps a point of the Earth’s surface to a point of a piece of paper.
Yet another map is a rotation of a sphere about some diameter: this maps a
point of the sphere to another one a fixed angular distance away as measured
about the axis of rotation.

We shall now introduce some standard notation and terminology regarding
maps. The statement that f maps M to NV is abbreviated f: M ~> N. The statement
that f maps a particular element x of M to y of NV has its own special notation,
fix by If the name of a map is f, the image of a point x is f(x). When the map
is a real-valued function of, say, n variables (so /: R” - R), it is conventional
among physicists to use the symbol f(x) to denote both the value of f on x and
the function itself. When there is no chance of confusion we will follow that
convention. If we have two maps, fand g, f: M —> N and g: N - P, then there is a

Fig. 1.7. A many-to-one map (function) of R to R.

f(x)%

J(xg)




