The
0S/2
~ Programming Environment

e

Da"i'ﬁ A. Schmitt

The
0S/2

Programming Environment

DIIR 8440

David A. Schmitt

Qrf o222

Prentice Hall
Englewood Cliffs, New Jersey 07632

9150022

Library of Congress Cataleging-in-Pubifcation Data

Scw~-tt, David A.
~=._The 0S/2 programming environment / by David A. Schmitt.
p. ch. '
Includes index.
ISBN 0-13-642827-0
1. C5/2 (Computer opgrating system) 2. MS-DOS (Computer operating
system) I. Title, :
0A’6.76.063838 1989
005.265--dc19 : 88-29759
_ ' cIp
Editorial/production supervision: Jacqueline A. Jeglinski
Cover design: Photo Plus Ant
Manufacturing buyer: Mary Ann Gloriande

_ To Karen-
5 © 1989 by Prentice-Hall, Inc.
=,& A Division of Simon & Schuster

= o For the inspiration, the time. and
constant encouragement. .

Englewood Cliffs, New Jersey 07632

The publisher offers discounts on this book when ordered
1itbulk quantities. For more information, write:

Special Sales/College Marketing
Prentice-Hall, Inc. ‘
Coliege Technical and Reference Division
Englewood Cliffs, NJ 07632

All nghts reserved. No part of this book may be
reproduced, in any form or by any means, .
withoyt permission in writing from the publigher. -

=2 3]

Printed in the United States of America

10987654321

ISBN 0-13-b42927-0

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentica-Hall Hispanoamericana, S.A., Maxico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo R D
Simon & Schuster Asia Pte. Ltd., Singapare
Editora Prentice-Hall do Brasil, Lida., Rio de Janeiro

i

Foreword

The unprecedented explosion in Personal Computers in the early
1980s was due in large part to the thousands of innovative application
programs which were developed for the DOS operating system. At
first, it seemed that the capabilities of the PC were limitless. But as the
environment matured, PC programmers soon started running into the
inherent limitations of the DOS architecture. The 640 KB physncai
address space, its single tasking structure, and the lack of reasonable
protection mechanisms make life very difficult for application devel-
opers.

In many ways, the PC software industry of 1988 is bemg throttled by
the capabilities of DOS. The increasingly sophisticated features of
today’s personal computer hardware cannot be harnessed using an op-
erating system which was never intended to support these new ma-
chines. To further complicate things, as the hardware has evolved, so
has the PC user community. Users are demanding more and more
sophisticated application programs which better exploit their hard-
ware investment. The PC application developers are stuck in the mid-
die of the tempest. Truly supporting the new hardware systems means
that application developers must spend more time and effort making
DOS do “unnatural acts” and less time making their applications
state-of-the-art programs.

The DOS engine which so successfully fueled the PC revolution is
rapidly running out of steam. But this is not an indictment of DOS as
much as it is 2n acknowledgement that the underlying hardware is
developing in ways which were inconceivable in 1981. DOS is rooted
in older hardware technologies which have little support for the large
memory or protection that is required by responsive, predictable, mul-
titasking environments.

-

~

vii

viii The OS/2 Programming Environment

In April, 1987, the IBM and Microsoft Corporations announced Oper-
ating System/2, the fruit of a joint software development venture.
OS/2 is a new system which was built with programmers in mind.
While design.ng the system we tried to listen to the common com-
plaints of DOS programmers. In fact, the design team which defined
the OS/2 architecture was composed of some of the best PC minds in
the industry today This joint Microsoft/IBM group brought their col-
lective experience to the project to attempt what many called a “mis- .
sion impossible” - building a system which addresses the weaknesses
. of the DOS environment while striving to maintain overall responsive-

,- ness and flexibility. Did the team succe€d? Well, the ultimate judge
will not be any of us who worked on the project. The ultimate judge is
you, the programmers who will use the system facilities to build a new
generation of exciting application programs and “system extensions.
We have done our job, but our appraisals will comg from you.

As the president of the Lattice corporation, Dave Schmitt has been

involved in the OS/2 project for quite some time. His company was

one of the first to acknowledge the possibilities of the system by port-

ing their products onto the new platform.- I first met Dave at the OSy2:
announcement in 1987 where he enthusiastically gave me a first hand

report on what we were ¢oing right, and more 1m,portahtly, what we

were doing wrong. His commentary was incisive’ It was clear to me

then that Dave really understood the PC business and why OS/Z was

needed. Since then, I have spokento him on many occasions.. He has .
always provided me with clear feedback, which was m‘valuable mput to

difficult design trade-offs. - - . _

Dave puts this understanding to work in this book. As I read through
the text, I could see OS/2 through different eyes. What you will read
here is the 05’/2 system from the- pcrspectwc of an experienced pro-
grammer who has gone through the* conversion from DOS to 0S/2.
His commentary is sometimes kind, sometimes not, but. always honest.
He does a good job putting the system’s capabllltle,s into perspectlve
I enjoyed reading this book, as Fam sure you will, <

Ed lacobucci - } : K

* -

Preface

I never met an operating system I didn’t like, going all the way back to
the early 1960s when I worked with the primitive I/O Control System
(I07S) on the IBM 1401 computer. During subsequent years [was a
design¢ . and programmer for four operating systems (which we called
central control programs) used in electronic telephone switching sys-
tems, culminating with a three-year stint in the early 1980s on the fault-
toleran“ version of UNIX known as DMERT.

If Pve learned anything during twenty-five years studying operating
systems, it is how to distinguish the good ones from the stinkers. The
good ones are a pleasure to use because they are efficient, understand-
able, and logically consistent. The stinkers are a pain to use because
they’re sluggish, arcane, and constantly surprise you with their incon-
sistencies. ‘

If you smell anything around OS/2, it’s the sweet smell of success. This
- is probably the most complex operating system cver crammed into a
microprocessor, but for all of its features, it is remarkably efficient and
is quite approachable. Youdo 't need to be an operauing system guru
to use most of the OS/2 fexrurcs.

In some ways, OS/2 is a compendium of the good operating system
ideas that have evolved during the past twenty-five years. While writ-
ing this book about the new technology of OS/2, I've had a lot of fun
discovering those old nuggets and seeing how they’ve been shined up
for use in the personal computing environment.

Many thanks to the fine people at IBM who gave me the opportunity
‘to play. with OS/2 while it was under development: Joe Carusillo,
Steve Hancock, Ed Iacobucci, Tom Peters, Emmet Wainwright, and

ix

X

The OS /2 Programming Environment

" many others. I also owe a lot to the programming staff at Lattice who

provided valuable insight as OS/2 users, especially Glenn Musial, Tom
Prodehl, and John Pruitt. And finally, thanks to Ed Moura, Jackie
Jeglinski, and the others at Prentice-Hall who sweated through this
book with me, and to Ed Yourdon who delivered the kick in the pants
that got me started.

David A. Schmitt

Introduction

Remember the early days of the IBM PC? Programming this little
beast wasn’t much fun. The original PC was just an anemic 16-bit
replacement for the 8-bit CP/M computers then in vogue, and DOS
(i.e., Microsoft’s MS-DOS and IBM’s PC-DQOS) didn’t do much to cor-
rect the deficiencies of CP/M. Furthermore, the Intel 8088 was a nasty -
chip to program in assembly language, and there weren’t many tools
available to support programming in higher-level languages.

But within a few years, the PC hardware had improved markedly, and
a large number of excellent software development tools were available
at reasonable prices. PC programming became a pleasant experience,
because these high-level tools provided a smooth ride over the many --
8088 potholes. Furthermore, DOS had evolved well beyond its CP/M
roots, but it remained an unobtrusive little operating system that could
be pushed aside whenever you wanted to get *"down and dirty" with the
hardware. PC programmers had found something that mainframe and
minicomputer programmers dream about: an environment in which the
programmer had total control F

Unfortunately, the people w,ho pay us programmers to indulge our
passion wouldn’t let us restfmfort‘%ly in this pleasant environment.
They saw what we couid do with the PC and wanted more: more color,
more graphics, more inter, qﬁe:ctnon, bigger spreadsheets, better help sys-

tems, and on and on. Thethardware folks thought this was great. After

all, they get their kicks by building systems with more memory, bigger
disks, faster processors, and more exotic peripherals. IBM and the
other computer manufacturers enjoyed this trend too, since they make
most of their money selling hardware.

But those of us who dcvclob PC application software for a living were

Xi

Xii The OS /2 Programming Environment .

getting more and more uncomfortable. The software solutions that
our customers and managers wanted could only be provided with huge
and complex packages that banged up solidly against some DOS limi-
tations that were not so easy to overcome. We found ourselves wasting
a lot of time bending, folding, and mutilating our programs so they
would fit within the 640-kilobyte memory limit. Many programmers -
spent long midnight hours devising bizarre schemes to thwart the DOS
single-tasking architecture, so we could then develop those essential
pop-up utilities, background communication handlers, and other mul-
titasking features

This constant tussle with DOS took a lot of the fun out of PC program-
ming. Of course, as an old and wise manager once told me, nobody

- said that programmers are supposed to have fun. But in this case, the
pleasure disappeared because PC programming was becoming a slow
and tedious process, with constant delays as we figured out how to get
around yet another DOS limit. This decrease in efficiency was cer-
tainly of great concern to managers as well as programmers. By late
1987, it became apparent that many PC programming projects were in
states of crisis, experiencing the delays and setbacks that have often
plagued software development projects on larger systems.

But fortunately, December of that year saw the marriage of IBM and
Microsoft produce OS/2, an offspring destined to lead us all into a
brave new world of PC programming, free of the many problems and
constraints in the DOS world. This fancy new operating system com-
bi.ies the best features of DOS and UNIX to give us a programming
environment that (at least today) appears to be limitless. We can now
wallow in a one-gigabyte address space. We can create entire armies
of cooperating processes busily going about their assigned tasks. And
with the Presentation Manager, we can finally write sophisticated in-
teractive graphical applications that don’t bring the system to its knees.

Well.....maybe OS/2 doesn’t really warrant this kind of purple prose;
after all, it’s really just another in a long string of operating systems,
and like all the others, it will probably cure some old problems and
create some new ones. So, as an application programmer, you’ll be
better off if you don’t completely convert to the OS/2 religion. Learn
as much as you can about it, develop an understanding of its strong and
. weak points, and understand how it relates to its predecessors, espe-

Introduction , xiii
cially DOS and UNIX. But remain a free thinker, because OS/2 will
not make these other systems obsolete. Furthermore, you’ll probably
see an even better operating system during your career. Perhaps it will
be called OS/3.

This is not the first OS/2 programming book, and it certainly won’t be
the last. Are these books necessary, or should you just buy the OS/2
Technical Reference Manual from IBM or Microsoft? Well, there are
several texts which, for the most part, duplicate information that can
be found in the reference manual. I suppose these would appeal to
someone who doesn’t want to lay out $200 for the manual.

Other books, most notably The OS/2 Programmer’s Guide by Ed Ia-
cobucci and Inside OS/2 by Gordon Letwin, were written by members
of the OS/2 design team in order to explain how and why this new
operating system was developed. But while these books-explain how
0S/2 works, they don’t tell you much about writing application pro-
grams for the new operating system. Iacobucci’s book does contain a
thorough treatment of the OS/2 Application Program Interface, but it
concentrates on assembly language programming, just like the 0S/2
Technical Reference.

And that’s where this text comes in. Rather than present a. blstory of
0S/2 or simply summarize the information contained in the reference
manual, Pve tried to focus on the transition from DOS to OS/2 for
programmers who are working in a high-level language such as C.
Most people who will write programs for OS/2, especially in its early
years, have some experience with DOS. Indeed, many of you will be
converting DOS programs to run under OS/2; you're probably less
concerned about using the new OS/2 features and more concerned
with minimizing your conversion effort. So, I will present OS/2 in just
that way. First we’ll examine the features it shares with DOS and ex-
plain how to use them. Then we’ll see how to improve your DOS
programs by making use of new OS/2 features such as multitasking.

Here’s a brief summary of the book’s contents:

« Chapter 1 explains why OS/2 was de\}eloped - basically a length-
ier treatment of the preceding paragraphs.

» Chapter 2 explains the different ways that DOS and OS/2 utilize
the Intel processors.

®

Xiv

« Chapter 3 gives a quick overview of the OS /2 feature set.

« Chapter 4 compares the DOS and OS/2 Application Program
Interfaces.

« Chapter 5 gives some guidelines for converting existing DOS pro-
grams to run in OS/2 protected mode.

« Chapter 6 explains the OS/2 File System, which is very similar to
that of DOS and also has some useful new features.

« Chapters 7, 8, and 9 describe the OS/2 tc'chniques for accessing
the screen, keyboard and mouse, which are much different and,
in some ways, better than the DOS techniques.

« Chapters 10, 11, and 12 discuss OS/2’s multitasking, memory
management, and interprocess communication features. Then
Chapter 13 covers some advanced 1/O topics not discussed in
Chapter 6.

. Chapter 14 covers the OS/2 features that support country-inde-'
pendent programming.

« Chapter 15 describes how to use the OS/2 "family-mode" capabil-
ity to produce software that can run under DOS or 0S/2 and
utilize the best features of both operating systems.

The Appendix is a quick reference to the functions that constitute the
Application Program Interface for IBM OS/2 Standard Edition 1.0,
which is essentially identical to Microsoft OS/2 Version 1.0.

You should have no trouble with this book if you are reasonably famil-
iar with DOS and the C language, and if you are at least comfortable
with short strétches of Intel assembly-language code. Those who do
not know DOS and/or C may have a harder time, but none of the
examples are complicated or arcane, and so you should get in the
groove after the first few chapters.

One area that gave me some trouble was the representation of hex-
adecimal numbers. In C, the hexadecimal form of the decimal number
256 is 0x100, while the assembly language form is 100H. I finally de-
cided to use both formats, depending on which one seemed to make
the most sense at the time. In many cases, such as when writing ad-

The OS/2 Programming Environment

Introduction

dresses in the segment:offset or selector:offset form, 1 write the plain
hexadecimal numbers with no prefix or suffix, since the meaning is
clear.

Incidentally, although neither Microsoft nor IBM like to state this di-
rectly, C is the preferred language for programming high-performance
OS/2 applications. If you review the OS/2 reference manuals, you’ll
find a lot of C-related examples and jargon, and the OS/2 Presenta-
tion Manager can’t really be used effectively from any other language.
So if you are not already a C programmer, I hope this book will help
you get your OS/2 "C legs." ‘

Table of Contents

1. The Need for OS/2
1.1 The Personal Computer Revolution
12 Standardized Sofiware: A New Industry
1.3 Conspicuous Consumption ’
1.4 The Limits of DOS
1.5 Introducing OS/2
1.6 A Compromising Situation

2. Intel Processors
2.1 Intel Processor Architecture
2.2 Real Addressing Mode
2.3 Protected Addressing Mode »
2.4 DOS-10-0S8/2 Conversion Rules

3. OS/2 Features
3.1 Multitasking
3.2 Operating System Services
3.3 Command Processor and Standard Commands
3.4 System Configuration
3.5 Summary

4. Application Program Interface
4.1 Operating System Service Functions
4.2 Program Initiation and Termination
4.3 Summary

5. Converting DOS Programs
‘ 5.1 Programmer, Know Thy Code
5.2 The Good, the Bad, and the Ugly-
5.3 Family Mode Considerations
5.4 Summary '

L R R

d

v W

11
15

31
2
—

- 3 <3

~a g

2x

3382

=i

The OS/2 Programming Environment

6. The File Manager 79
6.1 File Names and Directories 80
6.2 Basic File Operations 84
6.3 Directory Operations 95
6.4 File Names Revisited 104
6.5 Summary : 106
7. Video Interface ' 109
7.1 Video Access Methods 109
7.2 Video Access Via File Manager 110
7.3 Video 1/O Subsystem 117
7.4 Direct Access to Video Buffers 122
7.5 Pop-Up Screens 135
7.6 Font Management 136 -
7.7 Replacing the Video Subsystem ' , ' 136
7.8 Summary ' 137
8. Keyboard Interface 139
8.1 Keyboard Access Via FilemM'anager ' _ 140
8.2 Keyboard 1/0 Subsystem o 143
8.3 Keyboard Monitors ' 153
8.4 Summary T 157
9. Mouse Interface 159
9.1 Mouse Subsystem 159
9.2 Basic Mouse Operations 160
9.3 Replacing the Mouse Subsystem . 166
9.4 Summary o " 166
10. Multitasking | | 169
10.1 Session Management 170
10.2 Process Management . 171
10.3 Thread Management : 175

10.4 Summary ' | 185

Table of Contents

11. Memory Management 187
11.1 Physical Memory Organization 187
' 112 Logical Memory Organization ’ 189
+ 11.3 Allocating Data Segments 190
11.4 Suballocation . . 196
118 Allocating Code Segments ' 197
116 Summary ‘ - ' 198
12. Interprocess Communication . . 199
12.1 Shared Memory - Lo S 200
12.2 Signals R | o 200
, 12.3 Semaphores . ‘ ; 201
) 12.4 Pipes ' . T 204
12.5 Queues . , b 208
12.6 Summary o 208
13. Advanced I/0° . S 209
13.1 Asynchronous I/0 . 200
13.2 Status Operations 31
133 Device Control =, - . 217
' 134 IOPL Segments -~ . o 24
13, 5 Summary . . . o) ' 226«
14, Jnternational Features . 227
- 1441 QOuntry Codes and Code Pages _ & 228
142 Accessing Countly-Dependent lnfcmlation ~ 232
. " 143 Mampulatmg Code Pages 237
144 Message Files ; o S 239
145 Summary’ AT ‘ : 242
15. Famlly Mode R R 249
15.1 What Is Family Mode? ~ .~ ° . 250
152 Converting From DOS to Family Mode . 251
153 Deslgnuig New Famlly-Mode Programs . 253

* 15.4 Assembly Language Considerations ‘ 254

p
4

vi

The OS/2 Programming Environment

15.5 How to Cheat .
15.6 Building a Family-Mode Program !
15.7 How Family Mode Works |

2

" Appendix: OS/2 Application Prq?ram Interface

Index

255

257
260

265

359

- Chapter1

| The Need for OS/2

hS

1.1 The Pérsoéal Comimter Revolution

Odd matings often produce interesting and unexpected results. In 1981
IBM, one of the world’s largest and best-managed companies, joined with -
* Microsoft, a group of brash young microcomputer hackers, to produce a
simple personal computer and disk operating system. Who could bave pre-
.-dicted that this coupling would give rise to a multibillion dollar PC hardware
and software.industry in less than five years? Or that this computer architec-
ture would be so resilient that it would find use in every facet of domestic and
international business? "Or that the IBM PC and its clones would almost
totally eclipse the then-dominant CP/M, Apple, and Commodore comput-
: etS? o . o

Those early PCs were small. machines by today’s standards - an anemic 8088
_ microprocessor, less than 256 ki}obyges of main memory, cne or two low-
density floppy disks, and enly a few 1/O adaptors. But the PC and DOS
designers at IBM and Microsoft were either extraordinarily foresighted or
unusually lucky, because their basic design decisions survived more than five -
. years of rapid change - the so-called personal computer revolution.

Today’s PC is likely to sport at least 640 kilobytes of memory, a high perfor-
" mance 80286 or 80386 microprocessor, a hard disk storing at least 20
megabytes, and a multitude of 1/O devices. In addition to the keyboard,

ot
.}

9150022

9

