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Preface

This book consists of organized lecture notes which were used many
times for a one-year graduate course on solid state physics. It deals
with crystalline solids, excluding the effects of contact with another
medium. The properties of solids in contact with vacuum or another
material are of great scientific and technological interest, includ-
ing the case where a very thin layer of material is in contact with
- different materials on the two sides and may in a sense be consid-
ered two-dimensional. However, these properties belong to an area
of specific problems of various complexities, for which the theories
presented here are the basis of treatment.

The geometrically regular arrangement of atoms makes crystal-
line solids, three-dimensional and infinite in extent, the most easily
comprehended model of condensed matter. Understanding gained
from such idealized models is essential for the treatment of con-
densed matter in general, such as amorphous or glassy solids and
liquid crystals. '

~ This book is to be regarded as an introduction to the subject,
being limited to considerations of basic problems. Its content is
organized with an attempt to follow a logical sequence. Ion lattice
symmetry and its direct consequences are treated in Chapter I
Following the adiabatic approximation, the treatment is divided
into two parts: the system of ions, dealt with in Chapter II, and the
system of electrons, treated in Chapiers III and IV. Interactions of
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v1 . Preface

the two systems are consjdered in Chapter V. The extensive Chapter
VI deals with the various properties of the solid, beginning with
some general considerations in Section A and ending with Section
F on structure and Section G on phase transitions.

There are a number of books on solid state physics and numerous
review ‘articles dealing with its various special topics. The bibliog-
raphy lists some books which appear to be of broad interest.

Ajg a lecturer, 1 have continually gained a clearer understanding
of the subject from questions and discussions with students taking
- the course. In addition, I have benefited from discussions with many
colleagues. and research collaborators. It is a pleasure to acknowl-
edge my Indebtedness to all these friends.

H. Y. FAN

" West Lafayette, Indiana
June 1987
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CHAPTER ONE
Symmetry and the Lattice

1. SYMMETRY

The consideration of condensed matter is simplified if the substance
possesses some symmetry in the spatial arrangement of ions, nuclei’
with firmly bound electrons. Symmetry refers to the fact that the
matter appears the same from the point of view of a different coordi-
nate system. An equivalent definition of symmetry is that the mat-~
ter appears unchanged under an operation of a length-preserving,
linear coordinate transformation in the fixed coordinate system. A
_ linear transformation of Cartesnan coordinates represented by a vec-
tor x to those represented by x’ is given by

x' = Rx+t. (1.1)

The transformation preserves length if the components of t are real
and R is a real orthogonal matrix. A real orthogonal matrix has real
components, and its inverse is its transpose. In a suitably oriented
coordinate system, the matrix R has the form

+1 0 0
0 cos¢ ~—sing].
0 sing - cos ¢

R= (1.2)

R with +1 represents a rotation through the angle ¢ about the z;
axis. R with —1 represents the same rotation followed by reflection

. 1



2 Symmetry and the Lattice

~across the z,z3 plane; the operation is called an 1mproper ‘Tota-

tion. R with +1 and ¢ = 7 'is simply an inversion giving x ~x. A
symmetry operation may be represented by an operator ‘
T={R|s}, (1.3)

which consists of an operatlon 'R followed by a translatlon t.

Obviously, successive symmetry operations together are equwa—
lent to some individual symmetry operation. A collection of distinct
operations that are pure translations is a translation group or a
group of primitive translations. A collection of operations {R |0}
that do not involve any translation is a point group; all the rotation
axes and reflection planes have a common point that remains fixed
under all the transformations. A finite body can have only a point
group of symmetry, and the point group usually refers to a body
whose surface has the shape that gives the highest symmetry for a
body of the given matter. The collection of all symmetry operations
irrespective of the involvement of translation is the space group of
the substance. Operations that include translation occur only for a
body of infinite extent. The space group and point group of a sub-
stance apply to the bulk of a large body whose surface has negligible
effects. In addition to pure translations, there are two more kinds
of operations {R | t # 0}: (1) rotation about an axis followed by a
translation and (2) reflection across a plane followed by a transla-
tion. The axis is a screw axis, aud the plane is a glide plane. These
operations are sometimes included in the point group with their
translations set to zero; it must be kept in mind, then, that the
resulting “point group” ‘contains modified transformatxons that are
not symmetry operations.

Considerations of geometry show that there are 14 distinct trans-
lation groups, 32 point groups, and 230 space groups. There are 73
space groups that do not involve screw axes and glide planes; they
are called symmorphic space groups. The number of symmorphic
space groups (73) and the number of total space groups (230) are

. less than the product 14 x 32 = 448 because transformations about
2 point must hold about all points resulting from symmetry transla-
tions. Therefore each translation group is compatible with a limited
number of point groups.

Certain substances may be considered two-dimensional or one-
dimensional for the problems of interest. The number of relevant
operations and consequently the number of distinct groups is there-
fore less than that for an actually three-dimensional substance. For
the two-dimeasional case, translations are limited to a plane, rota-
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tion axes can only be normal to the plane, and a reflection can only
be across a line in the plane; there are 5 distinct translation groups,

10 point groups, and 17 space groups. One-dimensional substances
have only two space groups.

2. ELEMENTS OF GROUP THEORY

In mathematics, a group is defined as a collection of elements A, B,
C,... having the following properties:

(a) Any pair of elements combined in a prescribed way is also
an element of the group.

(b) One of the elements, E, is a unit element or identity:
EP=PE =P, (1.4)

where P is any element of the group.

(c) Every element P of the group must have an inverse P! that
is an element of the group. In particular,

_ PP '=P'P=E. (1.5)
(d) The associative law holds:-
| PQR = (PQ)R= P(QR). (1.6)

Some examples of a group are:

1. The collection of all integers with addition as combination,
E=0,P=n,P '=—n.

2. The collection of exp(j/n)s with multiplication as combina-
tion, where 7. is an integer and 7 =0,1,...,n—1.

8. The collection of vectors nia; + nza; + nsas with vector ad-

dition as combination, where ni,nz,ns are integers includ-
ing zero.

Two special kinds of groups may be mentioned: Abelian and cyclic.
A group is Abelian if the combination is commutative, that is, if
AB = BA for all the elements. In a cyclic group, all the elements
are combinations of a single element. Obviously, a cyclic group must
be Abelian. The three example groups given above are all Abelian.
Only example 2 is a cyclic group.

3



4 » Symmetry and the Lattice

The order of a group is the number of different elements in the
group. A subgroup is a collection of some elements of a group that
form a group by themselves; the identity element by itself is a trivial
subgroup. For example, all even integers including zero constitute
a subgroup of the group given abgve as example 1.

Coset. Let (H) be a subgroup, and let X be an element not con-
tained in (H). X(H) and (H)X are, respectively, the left coset and
right coset of group (G) under its subgroup {H). It can easily be
shown that a left or right coset caniot have any element in common -
with (H). Furthermore, two right{'cosets or two left cosets either
contain the same elements or b,n,vq ndf common elements at all.

v

‘Ezpansion of a group in coscto All,thy;vanous right or left cosets
together contain all elements of the group 'Ihéi‘éfore a group can
be expanded as N :

(G) = (H), X(H) Y(H)»

. ={E X, y }(H) (1.7)

or

Indez of a subgroup (H) in yroup (G) Tlus is the ratio n/ ngy, where
n is the order of (G) and ng is the mumber of elements in (H) and
in each coset. The callection of elements [E, X,Y,...] or [E,P,Q,...]
may not be a group. The two collections may not be the same.

Invariant subgroup. An invariant subgroup (H) satisfies the condi-

tion
o (H)=XYH)X, (1.9)
-~
where X is any element of the group. For such a subgroup,
" X(H)=(H)X,

and expansions in right cwets and in left cosets are 1dent1cal

Factor group. An invariant subgroup and the cosets (right or left),
each taken as an element, constitute the factor group:

o (G/H)=[(H)}.{X(H)l [Y(H),:e. .. (1.10)

It is easily shown that the' factor group ‘is indeed a group whose
ideatity element is. (H). The order of the factor group (G/H ) is the
s mdexof(H) in (G).
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Isomorphie groupé. A group (G) is said to have an n:1 isomor-
phism with the group (g) if each element X of (G) corresponds to
one element z; of (g) but z; corresponds to a collection of elements
X1, X525+ ., Xjn of (G). Two groups of 1:1 isomorphism are said
to be isomorphic or simply isgmorphic groups. The elements of (G)
. that correspond to the identity element of (g) form an invariant
subgroup of (G). S :

Direct-product group. Consider two gr;'mps
(G1) = E, g, As, ..., A

and
(G2) = E,B;,Bs,...,Bj

such that every element of one group commutes with all the ele-
ments. of the other group. The direct-product group (G x G3) is
defined by

(61 % G3) = E,A,,...,Ai,B3,A3Bs,...,A;Bs,...,AiB;. (1.11)
It is easy to show that a product group is indeed a group. ‘

Class of elements. Two elements, A and B, related by B =
X" 'AX, where X is some element of the group, are said to conju-
gate to each other. Evidently, an element is conjugate to itself; if A
is conjugate to B, then B is conjugate to A; if A is conjugate to B
and C, then B and C are conjugate to each other.

A complete set of conjugate elements is a class of the group.
The class containing an element A can be obtained by taking each
element of the group to form an element conjugate to A. An element
belongs to only one class; a group is divided into classes that have
no elements in common. The identity element forms a class by itself,
_and therefore no other class is a subgroup. An invariant subgroup
consists of complete classes in the group, including the class of the
identity element.

Symmetry and group theory. The consideration of symmetry is cov-
ered by group theory. Symmetry operations are group elements, and
successive operations are elements in combination. The translation
group, point group, and space group in symmetry are groups in
the sense of group theory. In terms of group theory, the translation
group 3gnd point group are two subgroups of the space group, and
a symmorphic space group is the direct-product group of the two.

3



6 Symmetry and the Lattice

The point group is isomorphic with the factor group. The transla-
tion group is an invariant subgroup, and it is Abelian.

Group multiplication table. For a group with noncommutative com-
bination, such as some point groups of symmetry, it is expeditious
to tabulate the combination for each pair of elements. The elements
of the group are listed in the top row and in the left column. The
element listed at the intersection of the mth row and nth column
is the combination of the mth element in the column and the nth
element in the row, with the latter preceding the first.

3. *"PROPERTIES OF MATTER AND SYMMETRY

A physxcal property P expresses the relation between two measur-
able quantltles Q. and Q2 of the substance: Q; = PQ2. Q1, Q2, and
P are given by tensors. The rank of P is equal to the sum of the
ranks of Q1 and Q2. If P is the same for the quantities measured rel-
ative to two different sets of axes, then the transformation from one
set of axes to the other is a symmetry element of the property P. The
important and understandable Neumann’s principle states that the
symmetry of any physical property must include the symmetry ele-
ments of the point group of the substance. It should be pointed out
that some properties possess certain inherent symmetries irrespec-
tive of the substance. For example, all second-rank tensor properties
inherently have inversion symmetry. The symmetry possessed by a
tensor reduces the number of independent components; the effect
sxmphﬁes problems involving the tensor In the transformation of z
axes to z’ axes thh

Ty = GorZy, (1.12)
the components of a tensor T transform according to
Toj...= (am@jrm..)Tim.... (1.13)

The equations are written in the dummy suffix notation, and the
range of each suffix is the three axes. A transformation of axes that
is a symmetry element of property P gives

Pij..= Pyjp...=(anajm...)Pim..., (1.14)

-which: provides a number of relations among the components of P,

thereby reducing its number of independent components.
‘Sometimes symmetry requires some component of the property

tensor to be symbolically different from itself. In such a case, the
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component must be numerically zero. For example, consider the
component D3z of a third-rank property tensor, for example, a
piezoelectric modulus. A rotation of axes by 7 about z3 has

ayy=-—1, ayz=-—1, daa=1, and ap,=0 for r#s,
giving )
t i
Dyigrgr = —Dhas.

For a substance that"conté,ins such a rotation of axes in its point
group of symmetry, we should have

Dl'a's' = Diaa.

Therefore, Dj33 must be zero for such substances. For the same
reason, all the components that have only one 1 or one 2 in the
subscript must be zero.

It should -be borne in mind that the symmetry of a substance
pertains to the substance in a definite condition that is specified by
the so-called external parameters. Usually, the symmetry consid-
ered refers to a condition fully specified by two of the three external
parameters temperature, pressure, and volume per unit mass. For
many properties, however, the condition of the substance involves
additional external parameters. For exampie, isothermal magnetore-
sistance and the Hall effect are electrical properties of a substance
with an applied magnetic field as an additional external parameter,
and electro-optical effects are optical properties of a substance with
an applied electric field as an additional parameter. For such cases,
the following evident principle is helpful: A substance with an addi-
tional external parameter possesses only those symmetry elements
that are common to the substance without the additional external
parameter and the external parameter by itself.

In the foregoing discussion about the symmetry of a property,
property is defined as a relation between two measurable rather
than measured quantities. The definition implies that the measure-
ments of concern do not affect the symmetry. This is not always
the case. For example, electrical resistivity relates the electric field
and electric current density, and the measurements may be made
at a field sufficiently high to significantly affect the symmetry of
the substance. Should this be the case, the effect of the field cn the
symmetry of resistivity has to be taken into ac:ount like that of an
additional external paramster.
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4. LATTICES

A lattice consists of points in a regular geometrical arrangement. It
is ¢ aracterized by primitive translation vectors that number 3, 2,
or 1 for a three-, two-, or one-dimensional lattice, respectively. The
lattice is invariant under any translation that consists of multiples of
individual primitive translation vectors. The primitive translation
vectors define a primitive cell. Each primitive translation vector -
connects two neighboring points, each has a different direction, and
no more than two vectors are coplanar. There is an arbitrariness in
the choice of the vectors and the resulting shape of the primitive
cell. However, a primitive cell always has the dimension ascribed to -
one point; that is, there are only points at the corners of the cell.
A lattice of points is known as a Bravais lattice. The number of
different Bravais lattices is. the number of different groups of trans-
lational symmetry. Each Bravais lattice has the highest point-group
symmetry compatible with the particular translational symmetry,
which is called the holohedral point group.

A lattice is often described in terms of a unit cell, which has a
more conventional shape. A unit cell may contain more than one
primitive cell. It may be primitive. (P), having points only at the
corners; body-centered (I), with an extra point at the center; base-
centered (C), with a point at the center of the base; ar face-centered
AF), with a point at the center of each surface. Lattices are classified
Anto systems according to the shape of the unit cell. There are four
fyst.gms Ior the .ﬁve possxble two-dlmensmnal lattices: -

ablique (P% Co
sectangalar (P) and (C), |
square (P), and :
hexagonal (P);

The 14 possible three-d.lmsmsxon&l lattxces have seven systems:

triclinic - avtb# c, a@iﬂ # 1 (P

monoclinic a#bs#e, a—ﬁ:&O #7, (P) and (C);
orthorhombic a # b # ¢ dis= 8= v =90°, (P), (C), (), and (F);
tetragonal a=bs#c, a=p=4=90° (P)and (I);

cubic a=b=c, a=p8=~=90° (P), (I), and (F);
trigonal a=b=c, a=L0=v<120° (#90°), (P); and
hexagonal a=b#ec, a=5=90° v=120° (P);



