mIntroduction
10 Optimization

Fdwin K.P Chong

and

Stanislaw H. Zak

Discrete Mathematics and Optimization

An Introduction to
Optimization

EDWIN K. P. CHONG
and

STANISLAW H. ZAK

A Wiley-Interscience Publication
JOHN WILEY & SONS, INC.
New York - Chichester - Brisbane - Toronto - Singapore

This text is printed on acid-free paper.
Copyright © 1996 by John Wiley & Sons, Inc.
All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of this work beyond
that permitted by Section 107 or 108 of the 1976 United

States Copyright Act without the permission of the copyright
owner is unlawful. Requests for permission or further
information should be addressed to the Permissions Department
John Wiley & Sons, Inc., 605 Third Avenue New York NY

10158-0012.

Library of Congress Cataloging in Publicagton Data
Chong, Edwin K. P. -~
An introduction to optimization / Edwin K P Chong and Stanislaw H Zak
p. cm. — (Wiley-Interscience scrics 1n discrete mathematics and optimization)
Includes bibliographical references (p -) and index
ISBN 0-471-08949-4 (cloth : acid-free)
1. Mathematical optimization. I. Zak Stanislaw H
IL. Title. I11. Series.
QAA402.5.Z35 1995

519.3-dc20 " 95 6111
CIP

Printed in the United States of America

10987654321

Preface

Optimization is central to any problem involving decision making, whether in
engineering or in economics. The task of decision making entails choosing
between various alternatives. This choice is governed by our desire to make the
“best” decision. The measure of goodness of the alternatives is described by an
objective function or performance index. Optimization theory and methods deal
with selecting the best alternative in the sense of the given objective function.

The area of optimization has received enormous attention in recent years,
primarily because of the rapid progress in computer technology, including the
development and availability of user-friendly software, high-speed and parallel
processors, and artificial neural networks. A clear example of this phenomenon is
the wide accessibility of optimization software tools such as MATLAB! and the
many other commercial software packages.

There are currently several excellent graduate textbooks on optimization
theory and methods [e.g., 4, 19, 22, 28, 51, 52, 59, 76], as well as undergraduate
textbooks on the subject with an emphasis on engineering design [e.g., 2, 62].
However, there is a need for an introductory textbook on optimization theory
and methods at a senior undergraduate or beginning graduate level. The present
text was written with this goal in mind. The material is an outgrowth of our
lecture notes for a one-semester course in optimization methods for seniors and
first-year graduate students at Purdue University, West Lafayette. In our presen-
tation, we assume a working knowledge of basic linear algebra and multivariable
calculus. For the reader’s convenience, a part of this book (Part) is devoted to
a review of the required mathematical background material. The many figures
throughout the text complement the written presentation of the material. We also
include a variety of exercises at the end of each chapter. A solutions manual with
complete solutions to the exercises is available from the publisher to instructors
who adopt this text. Some of the exercises require using MATLAB. The student
edition of MATLAB is suflicient for almost all the MATLAB exercises included
in the text. The MATLAB source listings for the MATLAB exercises are also
included in the solutions manual.

The purpose of the book is to give the reader a working knowledge of
optimization theory and methods. To accomplish this goal, we include numerous

'MATLAB is a registered trademark of The MathWorks, Inc.

xii Preface
examples that illustrate the theory and algorithms discussed in the text. However,
it is not our intention to provide a cookbook of the most recent numerical
techniques for optimization; rather, our goal is to equip the reader with sufficient
background for further study of advanced topics in optimization.

The field of optimization is a very active research area. In recent years, various
new approaches to optimization have been proposed. In this text, we have tried to
reflect at least some of the flavor of recent activity in the area. For example, in our
treatment of linear programming, we discuss not only the classical simplex
method, but also the more recent methods of Khachiyan and Karmarkar for
solving linear programs. There has also been a recent surge of applications of
optimization methods to a variety of new problems. A prime example of this is the
use of descent algorithms for the training of feedforward neural networks. An
entire chapter in the book is devoted to this topic. The area of neural networks is
an active area of ongoing research, and many books have been devoted to this
subject. The topic of neural network training fits perfectly into the framework of
unconstrained optimization methods. Therefore, the chapter on feedforward
neural networks provides not only an example of application of unconstrained
optimization methods, it also gives the reader an accessible introduction to what
is currently a topic of wide interest. We also include a discussion of genetic
algorithms, a topic becoming of increasing importance in the study of complex
adaptive systems.

The material in this book is organized into four independent parts. Part
1 contains a review of some basic definitions, notations, and relations from linear
algebra, geometry, and calculus that we use frequently throughout the book. In
Part I, we consider unconstrained optimization problems. We first discuss some
theoretical foundations of unconstrained optimization, including necessary and
sufficient conditions for minimizers and maximizers. This is followed by a treat-
ment of various iterative optimization algorithms, together with their properties.
A discussion of genetic algorithms is included in this part. We also analyze the
least-squares optimization problem and the associated recursive least-squares
algorithm. Parts III and IV are devoted to constrained optimization. Part I11
deals with linear programming problems, which form an important class of
constrained optimization problems. We give examples and analyze properties of
linear programs and then discuss the simplex method for solving linear programs.
We also provide a brief treatment of dual linear programming problems. We
wrap up Part 111 by presenting non-simplex algorithms for solving linear
programs, namely, Khachiyan’s and Karmarkar’s methods. In Part IV, we treat
nonlinear constrained optimization. Here, as in Part II, we first present some
theoretical foundations of nonlinear constratined optimization problems. We
then discuss different algorithms for solving constrained optimization problems
with equality as well as inequality constraints.

We are grateful to several people for their help during the course of writing this
book. In particular, we thank Dennis Goodman of Lawrence Livermore Labora-
tories for his comments on early versions of Part II, and for making available to
us his lecture notes on nonlinear optimization. We thank Moshe Kam of Drexel

Preface Xiii

University for pointing out some useful references on non-simplex methods. We
are grateful to Ed Silverman and Russell Quong of Purdue University for their
valuable remarks on Part [. We also thank the students of EE 580 for their many
helpful comments and suggestions. In particular, we are grateful to Christopher
Taylor for his diligent proofreading of early versions of the book.

E. K. P. CHonG
S. H. ZAx
West Lafayette, Indiana

Contents

Preface

PART 1. MATHEMATICAL REVIEW

1 Methods of Proof and Some Notation

1.1 Methods of Proof
1.2 Notation

2 Real Vector Spaces and Matrices

2.1 Real Vector Spaces

2.2 Rank of a Matrix

2.3 Linear Equations

2.4 Inner Products and Norms

3 Transformations

3.1 Linear Transformations

3.2 FEigenvalues and Eigenvectors
3.3 Orthogonal Projections

3.4 Quadratic Forms

3.5 Matrix Norms

4 Concepts from Geometry

4.1 Line Segments

4.2 Hyperplanes and Linear Varieties
4.3 Convex Sets

4.4 Neighborhoods

4.5 Polytopes and Polyhedra

5 Elements of Differential Calculus
5.1 Differentiability
5.2 The Derivative Matrix

xi

12
17
19

23

23
24
27
28
33

41

41
41
44
46
47

50
50
52

viii

10

11

5.3 Chain Rule
5.4 Level Sets and Gradients
5.5 Taylor Series

PART1I. UNCONSTRAINED OPTIMIZATION

Basics of Unconstrained Optimization

6.1 Introduction
6.2 Conditions for Local Minima

One-Dimensional Search Methods

7.1 Golden Section Search

7.2 Fibonacci Search

7.3 Newton’s Method

7.4 Secant Method

7.5 Remarks on Line Search Methods

Gradient Methods

8.1 Introduction
8.2 Steepest Descent Method
8.3 Analysis of Gradient Methods

Newton’s Method

9.1 Introduction

9.2 Analysis of Newton’s Method
Conjugate Direction Methods

10.1 Introduction

10.2 The Conjugate Direction Algorithm

10.3 The Conjugate Gradient Algorithm

10.4 The Conjugate Gradient Algorithm for

Nonquadratic Problems

Quasi-Newton Methods

11.1 Introduction
11.2 Approximating the Inverse Hessian

11.3 The Rank One Correction Formula

11.4 The DFP Algorithm
11.5 The BFGS Algorithm

Contents

54
55
59

65

67

67
68

80

80
84
92
96
98

101

101
102
110

122

122
125

132

132
134
139

143

147

147
148
151
155
160

Contents

12

13

14

15

16

17

Solving Ax =5

12.1 Least-Squares Analysis

12.2 Recursive Least-Squares Algorithm
12.3 Solution to Ax = b minimizing | x||
124 Kaczmarz’s Algorithm

12.5 Solving Ax = b in General

Unconstrained Optimization and Feedforward Neural Networks

13.1 Introduction
13.2 Single-Neuron Training
13.3 The Backpropagation Algorithm

Genetic Algorithms

14.1 Basic Description
14.2 Analysis of Genetic Algorithms

PART IIl. LINEAR PROGRAMMING

Introduction to Linear Programming

15.1 A Brief History of Linear Programming

15.2 Simple Examples of Linear Programs

15.3 Two-Dimensional Linear Programs

15.4 Convex Polyhedra and Linear Programming
15.5 Standard-Form Linear Programs

15.6 Basic Solutions

15.7 Properties of Basic Solutions

15.8 A Geometric View of Linear Programs

The Simplex Method

16.1 Solving Linear Equations Using Row Operations
16.2 The Canonical Augmented Matrix

16.3 Updating the Augmented Matrix

16.4 The Simplex Algorithm

16.5 Matrix Form of the Simplex Method

16.6 The Two-Phase Simplex Method

16.7 The Revised Simplex Method

Duality

17.1 Dual Linear Programs
17.2 Properties of Dual Problems

166

166
173
177
179
183

194

194
196
199

212

212
218

225

227

227
228
234
236
238
242
247
250

257

257
263
265
267
273
277
281

290

290
297

X

18

19

20

21

22

Non-Simplex Methods

18.1 Introduction
18.2 Khachiyan’s Algorithm
18.3 Karmarkar’s Algorithm

PARTIV. NONLINEAR CONSTRAINED
OPTIMIZATION

Problems with Equality Constraints

19.1 Introduction

19.2 Problem Formulation

19.3 Tangent and Normal Spaces

19.4 Lagrange Conditions

19.5 Second-Order Conditions

19.6 Minimizing ||x|| Subject to Ax = b: A Lagrange Perspective

Problems With Inequality Constraints
20.1 Karush—Kuhn-Tucker Conditions
20.2 Second-Order Conditions

Convex Optimization Problems

21.1 Introduction
21.2 Convex Functions
21.3 Optimization of Convex Functions

Algorithms for Constrained Optimization

22.1 Projected Gradient Methods
22.2 Penalty Methods

Bibliography

Index

Contents

305

305
306
309

323

325

325
327
328
335
343
347

351
351
358
366

366
368
376

384

384
389

396

401

Part I
MATHEMATICAL REVIEW

1

Methods of Proof and
Some Notation

1.1. METHODS OF PROOF

Consider two statements, “A” and “B,” which could be either true or false. For
cxample, let “A” be the statement “John is an engineering student,” and let “B” be
the statement “John is taking a course on optimization.” We can combine these
statements to form other statements, like “A and B” or “A or B.” In our example,
“A and B” means “John is an engineering student, and he is taking a course on
optimization.” We can also form statements like “not A,” “not B,” “not (A and
B),” and so on. For example, “not A” means “John is not an engineering student.”
The truth or falsity of the combined statements depends on the truth or falsity of
the original statements, “A” and “B.” This relationship is expressed by means of
truth tables (e.g., see Tables 1.1 and 1.2). From Tables 1.1 and 1.2, it is easy to see
that the statement “not (A and B)” is equivalent to “(not A) or (not B)” (see
Exercise 1.3). This is called DeMorgan’s Law.

In proving statements, it is convenient to express a combined statement by
a conditional, such as “A implies B,” which we denote “A = B.” The conditional
“A=B”is simply the combined statement “(not A) or B,” and is often also read “A
only if B,” “if A then B,” “A is sufficicnt for B,” or “B is necessary for A.”

We can combine two conditional statements to form a biconditional statement
of the form “A<B,” which simply means “(A=>B) and (B=>A).” The statement
“A<B” reads “A if, and only if, B,” or “A is equivalent to B,” or “A is necessary
and sufficient for B.” Truth tables for conditional and biconditional statements
are given in Table 1.3.

It is easy to verify, using the truth table, that the statement “A=B" is
equivalent to the statement “(not B)=>(not A}.” The latter is called the contraposi-
tive of the former.

If we take the contrapositive to DeMorgan’s Law, we obtain the assertion that
“not (A or B)” is equivalent to “(not A) and (not B).”

Most statements we deal with have the form “A=-B.” To prove such a state-
ment, we may use one of the following three different techniques:

1. The direct method

4 Methods of Proof and Some Notation

Table 1.1 Truth Table for “A and B and “A or

B”
A B A and B AorB
F F F F
F T F T
T F F T
T T T T

Table 1.2 Truth Table for “not

A”

A Not A
F T

T F

Table 1.3 Truth Table for Conditionals and

Biconditionals

A B A=B A<=B A<B
F F T T T

F T T F F
T F F T F

T T T T T

2. Proof by contraposition
3. Proof by contradiction or reductio ad absurdum.

In the case of the direct method, we start with “A,” then deduce a chain of various
consequences to end with “B.”

A useful method for proving statements is proof by contraposition, based on the
equivalence of the statements “A =>B" and “(not B)=-(not A).” We start with “not
B,” then deduce various consequences to end with “not A” as a conclusion.

Another method of proof that we use is proof by contradiction, based on the
equivalence of the statements “A=>B" and “not (A and (not B)).” Here we begin
with “A and (not B)” and derive a contradiction.

Occasionally, we will use the Principle of Induction to prove statements. This
principle may be stated as follows. Assume that a given property of positive
integers satisfies the following conditions:

The number 1 possesses this property;
If the number n possesses this property, then the number n + 1 possesses it too.

The Principle of Induction states that under these assumptions any positive
integer possesses the property.

Exercises

The Principle of Induction is easily understood using the following intuitive
argument. If the number 1 possesses the given property, then the second condi-
tion implies that the number 2 possesses the property. But, then again, the second
condition implies that the number 3 possesses this property, and so on. The
Principle of Induction is a formal statement of this intuitive reasoning.

1.2. NOTATION

Throughout, we use the following notation. If X is a set, then we write xe X to
mean that x is an element of X. When an object x is not an element of a set X, then
we write x¢ X. We also use the “curly bracket notation” for sets, writing down the
first few elements of a set followed by three dots. For example, {x,,x,,x5,...} is
the set containing the elements x,, x,, x5, and so on. Alternatively, we can
explicitly display the law of formation. For example, {x:xeR, x > 5} reads “the
set of all x such that x is real and x is greater than 5.” The colon following x reads
“such that.” An alternative notation for the same set is {xeR:x > 5}.

If X and Y are sets, then we write X — Y to mean that every element of X is also
anelement of Y. In this case, we say that X is a subser of Y.If X and Y are sets, then
we denote by X\Y the set of all points in X that are not in Y. Note that X\Y is
asubset of X. The notation f: X — Y means “f is a function from the set X into the
set Y.” The symbol := denotes arithmetic assignment. Thus, a statement of the
form x:= y means “x becomes y.” The symbol £ means “equals by definition.”

Throughout the text, we mark the end of theorems, lemmas, propositions, and
corollaries using the symbol []. We mark the end of proofs, definitions, and

examples by lL

EXERCISES

1.1 Construct the truth table for the statement “(not B)=-(not A),” and use it to
show that this statement is equivalent to the statement “A=-B.”

1.2 Construct the truth table for the statement “not (A and (not B)),” and use it
to show that this statement is equivalent to the statement “A=-B.”

1.3 Prove DeMorgan’s Law by constructing the appropriate truth tables.

1.4 Prove that for any statements A and B, we have “A<>(A and B)” or “(A and
(not B)).” This is useful because it allows us to prove a statement A by
proving the two separate cases “(A and B),” and “(A and (not B)).” For
example, to prove that |x| = x for any xeR, we separately prove the cases
“Ix] = xand x = 0,”and “|x| > x and x < 0.” Proving the two cases turns out
to be easier than directly proving the statement | x| > x (see Section 2.4 and
Exercise 2.4).

1.5 Suppose you are shown four cards, laid out in a row. Each card has a letter
on one side and a number on the other. On the visible side of the cards are

Methods of Proof and Some Notation

printed the symbols:
S 8 3 4

Determine which cards you should turn over to decide if the following
ruleis true or false: “If there is a vowel on one side of the card, then there is an
even number on the other side.”

2

Real Vector Spaces and
Matrices

2.1. REAL VECTOR SPACES
We define a column #n vector to be an array of n numbers, denoted by

a,

a,
a:

a'!

The number g; is called the ith component of the vector a. Denote by R the set of
real numbers, and by R” the set of column n-vectors with real components. We
call R” an n-dimensional real vector space. We commonly denote elements of R"
by lower case bold letters, for example, x. The components of xe R" are denoted
by xy,...,X,.

We define a row n-vector as

La,,a,,....a,].

The transpose of a given column vector a is a row vector with corresponding
elements, denoted a”. For example, if

a4
a,
a= . 3
an
then
T _
a =[da,,a,,...,4a,].

Equivalently, we may write @ = [a,,a,,...,a,]". Throughout the text, we adopt

7

