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Preface

In a mathematical world of increasing specialization, it is important not to lose
sight of how different fields are related to one another, and of how various ideas
fit together. Those are the premises on which this book was conceived, as they
apply to graph theory. On one level, graphs appear throughout mathematics
(indeed, throughout life), since a graph is just a model of a relation. However,
that ubiquity may obscure the deeper connections that have been developed
between graph theory and other branches of mathematics. The purpose of this
book is to present examples of these connections.

The connections are not all of the same kind. Some form a body of material
that overlaps two fields, whereas others consist primarily of applications of one
area to another. The applications may be to graph theory or from it. Whatever
the form of the connections, light is shed on both areas, and that is in itself an
excellent reason for examining the connections.

Although we do not claim to cover all of the areas of mathematics which have
connections with graph theory, we believe that this collection contains most of
the important ones and that there is sufficient diversity in these to illustrate
their wide variety.

Wherever feasible, uniform notation and terminology are used throughout
the book. Much of this, as well as some other relevant background material,
is provided in an introductory chapter. Otherwise, the individual chapters are
independent, except for an occasional cross-reference.

"The origin of the book was a highly successful one-day conference sponsored
by the British Combinatorial Committee and held at the Open University in
Milton Keynes in 1994. Several of the chapters are based on talks given there;
additional topics were added in order to present a wider range.

That conference was open to all, but was designed primarily for graduate
students to learn about ‘graph theory across the field of mathematics’. This
concept has been carried over to the book; it is a resource for learning about
how graph theory interacts with other branches of mathematics. As such, it can
function as the basis of a graduate-level seminar, or can be used by individuals
or groups interested in particular topics.
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1
Introduction

ROBIN J. WILSON

We present those definitions and theorems in graph theory that are assumed
throughout this book. Further explanation of these terms, together with the proofs
of stated results, can be found in the standard texts listed below, although not all
of the terminology is standardized. Definitions and results not included here are
introduced later, as needed.

1.1 Graphs

A graph G consists of a finite non-empty set V(G) of elements called vertices
and a finite set E(G) of distinct unordered pairs of distinct elements of V(G)
called edges (see Fig. 1.1). We call V(G) the vertez set of G and E(G) the edge
set of G; these are sometimes abbreviated to V and E, respectively. The number
n of vertices of G is the order of G, and the number of edges of G is denoted by
m. The edge {v,w} (where v and w are vertices of G) is often denoted by vw.

Fic. 1.1

If, in the definition of a graph, we remove the restriction that the edges are
distinct, then we obtain a multigraph (see Fig. 1.2); two or more edges joining
the same pair of vertices are multiple edges. If we also remove the restriction
that the edges join distinct vertices, thus allowing the existence of loops, then
the resulting object is a general graph (see Fig. 1.3). If loops and multiple edges
are excluded, then we use the term simple graph.

Fic. 1.2 Fic. 1.3
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There are many other variations on the concept of a graph. If one vertex
is distinguished from the rest, then we have a rooted graph; the distinguished
vertex is the root, indicated by a small square (see Fig. 1.4). A labelled graph of
order n is a graph whose vertices have been assigned the numbers 1,2,...,n so
that no two vertices are assigned the same number (see Fig. 1.5). A signed graph
is a graph to each edge of which is assigned either + or — (see Fig. 1.6).

2

FiGc. 1.4 Fic. 1.5 Fic. 1.6

A hypergraph is like a graph, except that the edges consist of any subset
of vertices; more formally, a hypergraph H consists of a finite non-empty set
V(H) of elements called vertices and a finite set E(H) of distinct sets of distinct
elements of V(H) called hyperedges (see Fig. 1.7).

€4

€1 = V3V4Vs, €= VsVg, €3= VgV1Vg, €4 = VyV3V7, €5 = V V), €6 = Vg

Fic. 1.7

We also define infinite graphs, in which we no longer insist that V(G) and
E(G) be finite; a countable graph is one in which V(G) and E(G) are finite or
countably infinite, and a locally finite graph is one in which the number of edges
incident with each vertex is finite.

Finally, we consider directed graphs, in which each edge is assigned a di-
rection. More formally, a digraph D consists of a finite non-empty set V(D) of
elements called vertices and a finite set A(D) of distinct ordered pairs of dis-
tinct elements of V(D) called arcs (see Fig. 1.8). The arc (v, w) (where v and
w are vertices of D) is often denoted by vw. A simple digraph is a digraph with no
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loops vv or multiple arcs. If D is a digraph, then the underlying graph of D is
the graph or multigraph obtained from D by replacing each arc by an undirected
edge joining the same pair of vertices.

Fic. 1.8

1.2 Adjacency and incidence

If e = vw is an edge of a graph G, then e joins the vertices v and w, and these
vertices are adjacent; in this case, we say that e is incident with v and w, and
that w is a neighbour of v. The neighbourhood N(v) of v is the set of all vertices
of G adjacent to v. Two edges of G incident with the same vertex are adjacent
edges.

Two graphs G' and H are isomorphic (written G = H) if there is a one-
to-one correspondence between their vertex sets that preserves the adjacency
of vertices. An automorphism of G is a one-to-one mapping ¢ of V(G) onto
itself with the property that ¢(v) and ¢(w) are adjacent if and only if v and
w are. The automorphisms of G form a group I'(G) under composition, called
the automorphism group of G; I'(G) is transitive if it contains automorphisms
mapping each vertex of G to every other vertex, and edge-transitive if it contains
automorphisms mapping each edge of G to every other edge.

For each vertex v in a graph G, the number of edges incident with v is the
degree of v, denoted by deg(v). The maximum degree in G is denoted by A. A
vertex of degree 0 is an isolated verter, and a vertex of degree 1 is an end-vertex.
The degree list of G is the set of degrees of the vertices of G, often arranged
in non-decreasing order; for example, the degree list of the graph in Fig. 1.1 is
(1,2,2,3). If all of the vertices of G have the same degree k, then G is regular of
degree k or k-regular. A 3-regular graph is a cubic graph.

Analogous concepts can be defined for digraphs. If e = vw is an arc of a
digraph D, then v and w are adjacent, and e is incident from v and incident to
w. If v is a vertex of a digraph D, then its out-degree outdeg(v) is the number
of arcs in D of the form vw, and its in-degree indeg(v) is the number of arcs in
D of the form wv.

An independent (or stable) set of vertices in a graph G is a set of vertices
of G no two of which are adjacent, and the size of a largest such set is the
independence (or stability) number of G. Similarly, an independent set of edges
or matching is a set of edges of G no two of which are adjacent, and the size of
a largest such set is the edge-independence number of G. An independent set of
edges that includes every vertex of G is a I-factor or perfect matching in G.
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Let G be a graph with vertex set {vy,v2, ..., v, } and edge set {e;,€2,..., €}
The adjacency matriz of G is the n x n matrix A(G) = (ai;), where

_ 1, if v; and v; are adjacent,
@ij 0, if not,

and the incidence matriz of G is the n x m matrix B(G) = (b;;), where

b = 1, if v; is incident with e;,
t 0, if not.

Note that the eigenvalues of A(G) are independent of the way in which the
vertices are labelled. We refer to them as the eigenvalues of G, and to the char-
acteristic polynomial of A(G) as the characteristic polynomial of G.

1.3 Paths and cycles

A sequence of edges of the form vovy,vyv2, ..., v,_;v, (sometimes abbreviated to
VU1 - .. V) iS a walk of length r between vy and v,. If these edges are all distinct,
then the walk is a trail, and if the vertices vg,v;,...,v, are also distinct, then
the walk is a path (or open path). Two paths are edge-disjoint if they share
no common edges, and are vertez-disjoint if they share no common vertices,
although one frequently relaxes this condition to allow the end-vertices of the
paths to coincide. A walk or trail is closed if vy = v,, and for r > 0 a closed walk
in which the vertices vo,v1, ..., v, are all distinct is a cycle.

A cycle of length 3 is a triangle. The length of a shortest cycle in a graph
G is the girth of G. If v and w are vertices in G, then the length d(v, w) of any
shortest path from v to w is the distance between v and w. The largest distance
between two vertices in G is the diameter of G.

These definitions extend to directed graphs and infinite graphs. Thus, a trasl

in a digraph is a sequence of distinct arcs of the form wvovy, v;vs, .. ., Vr_1Vr, &
path is such a sequence in which the vertices are all distinct, and for r > 0 a cycle
is a sequence of arcs of the form vovy,v102, .. .,v,_ 09, where vg, vy, ..., v, are

digtinct. In an infinite graph, a two-way infinite path is a sequence of distinct
edges of the form

..,'l)_.,.’v__r+1,...,'U_l’U(),’U()’Ul,...,’U,U.,-_H,... .

A graph G is connected if there is a path joining each pair of vertices of G;
a graph that is not connected is called disconnected. Every disconnected graph
can be split into maximal connected subgraphs, called components. There are
analogous definitions for digraphs; a digraph D is strongly connected if there is a
(directed) path in D joining each pair of vertices in each direction, and connected
if the underlying graph is connected.
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1.4 New graphs from old

A subgraph of a graph G = (V(G), E(G)) is a graph H = (V(H), E(H)) such
that V(H) C V(G) and E(H) C E(G). If V(H) = V(G), then H is a spanning
subgraph of G. If W is any set of vertices in G, then the subgraph induced by W
is the subgraph of G obtained by joining those pairs of vertices in W that are
joined in G. An induced subgraph of G is a subgraph that is induced by some
subset W of V(G). Similar definitions can be given for digraphs and multigraphs.

If e is an edge of G, then the edge-deleted subgraph G — e or G\e is the graph
obtained from G by removing the edge e; more generally, G — {e, .. €k} is
the graph obtained from G by removing the edges e, ..., ex. Similarly, if v is a
vertex of G, then the verter-deleted subgraph G — v is the graph obtained from
G by removing the vertex v together with all its incident edges; more generally,
G—{v1,...,vk} is the graph obtained from G by removing the vertices v, . .., vk
and all edges incident with any of them. These concepts are illustrated in Fig. 1.9.

G G-e G-v

F1G. 1.9

We can also obtain a new graph from G by removing the edge e = vw and
identifying v and w so that the resulting vertex is incident to all edges (other
than e) that were originally incident with v or w; this is called contracting the
edge e (see Fig. 1.10), and the resulting graph is denoted by G /e. If the graph H
can be obtained from G by a succession of edge contractions such as this, then G
is contractible to H. A minor of G is any graph obtained from G by a succession
of edge-deletions and edge-contractions.

e Q/
v vw

FiG. 1.10

w

If e = vw is an edge of G, then we obtain a new graph by replacing e by
two new edges vz and zw, where z is a new vertex; this is called subdividing the
edge (see Fig. 1.11). Two graphs that can be obtained from the same graph by
subdividing its edges are homeomorphic.
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FiG. 1.11

If G and G’ are graphs with the same vertex set, then their intersection
G NG is the graph with edge set E(G) N E(G’), and their union G UG’ is the
graph with edge set E(G) U E(G’). If G and G’ are disjoint graphs, then their
disjoint union G U G’ is the graph with vertex set V(G) U V(G') and edge set
E(G)U E(G'); the disjoint union of k copies of G is written kG. The join G *x G’
is obtained from the disjoint union of G and G’ by adding an edge between each
vertex of G and each vertex of G’. The Cartesian product G x G’ is the graph
with vertex set V(G) x V(G’) in which the vertex (v, w) is adjacent to the vertex
(v',w') whenever v = v’ and w is adjacent to w’, or w = w' and v is adjacent
to v'.

The complement G of G is the graph with the same vertex set as G, but
where two vertices are adjacent whenever they are not adjacent in G; a graph is
self-complementary if it is isomorphic to its complement. The line graph L(G)
of G is the graph whose vertices correspond to the edges of G, and where two
vertices are joined whenever the corresponding edges of G are adjacent.

If G is a connected graph, and if the graph G — e is disconnected for some
edge e, then e is a bridge (or cut-edge or isthmus) of G. More generally, a cutset
(or edge-cut) in G is a set of edges whose removal disconnects G. A graph G
is k-edge-connected if every two vertices v and w are connected by at least k
edge-disjoint paths, and the edge-connectivity A(G) of G is the largest value of
k for which G is k-edge-connected.

If G is a connected graph, and if the graph G — v is disconnected for some
vertex v, then v is a cut-vertez of G. More generally, a separating set of vertices
in G is a set of vertices whose removal disconnects G. A graph G with at least
k + 1 vertices is k-connected if every two vertices v and w are connected by
at least k paths that are pairwise disjoint except for the vertices v and w; a
2-connected graph is a block or a non-separable graph. The connectivity x(G) of
G is the largest value of k for which G is k-connected; note that x(G) < A(G).

The most important result relating these concepts is Menger’s Theorem; it
takes several forms, among which are the following.

Theorem 1.1 (Menger’s Theorem) Let G be a connected graph with at
least k + 1 vertices. Then

(a) G is k-connected if and only if G cannot be disconnected by the removal
of k—1 or fewer vertices;

(b) G is k-edge-connected if and only if G cannot be disconnected by the re-
moval of k — 1 or fewer edges.
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1.5 Examples of graphs

A graph in which every two vertices are adjacent is a complete graph; the com-
plete graph with n vertices and n(n — 1)/2 edges is denoted by K,. The cycle
graph C, of order n consists of the vertices and edges of an n-gon. The wheel W,
is the graph C,_; * K, and the path graph P, is obtained by removing an edge
from C,,. The null graph N, of order n is the graph with n vertices and no edges.
The graphs Ks, Cs, Ws, Ps and N5 are shown in Fig. 1.12. It is also occasionally
useful to introduce the empty graph (not really a graph at all), consisting of no
vertices or edges.

K;s Cs Ws Ps Ns

Fic. 1.12

A cligue in a graph G is a complete subgraph of G, and a mazimum clique
is a clique of maximum order in G. The clique number w(G) of G is the order
of a maximum clique. A tournament is an ‘oriented complete graph’—that is, a
digraph in which every two vertices are joined by exactly one arc.

A bipartite graph is a graph whose vertex set can be partitioned into two
sets so that each edge joins a vertex of the first set and a vertex of the second
set. A complete bipartite graph is a bipartite graph in which each vertex in the
first set is adjacent to every vertex in the second set; if the two sets contain r
and s vertices, then the complete bipartite graph is denoted by K, s. A complete
k-partite graph is obtained by partitioning the vertex set into k sets, and joining
two vertices whenever they lie in different sets; if all of these sets have size r,
then the resulting graph is the complement of 7K, and is denoted by K, . . or
Ky(ry- The graphs K33 and K3 3 3 are shown in Fig. 1.13.

FiG. 1.13 FiG. 1.14

The Petersen graph is the graph shown in Fig. 1.14; it is the complement of
the line graph of Ks. The Platonic graphs are the graphs corresponding to the
vertices and edges of the five regular solids—the tetrahedron, cube, octahedron,



