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PREFACE

This book is intended for use in a second graduate course in modern control
theory. A background in the state-variable representation of systems is as-
sumed. Matrix manipulations are the basic mathematical vehicle, and for those
whose memory needs refreshing, Appendix A provides a short review.

The book is also intended as a reference. Numerous tables make it easy to
find the equations needed to implement optimal controllers for practical
applications.

Our interactions with nature can be divided into two categories: observation
and action. While observing, we process data from an essentially uncooperative
universe to obtain knowledge. Based on this knowledge, we act to achieve our
goals. This book treats the control of systems assuming perfect and complete
knowledge. The dual problem of estimating the state of our surroundings is
assumed to have been solved. A course in optimal estimation is required to
conscientiously complete the picture begun in this text.

My intention was to present optimal control theory in a clear and direct
fashion. This goal naturally obscures the more subtle points and unanswered
questions that are scattered throughout the field of modern system theory.
What appears here as a completed picture is in actuality a growing body of
knowledge that can be interpreted from several points of view and that takes
on different personalities as new research is completed.

I have tried to show with many examples that computer simulations of
optimal controllers are easy to implement and are an essential part of gaining
an intuitive feel for the equations. Students should be able to write simple
programs as they progress through the book to convince themselves that they
have confidence in the theory and understand its practical implications.

Relations to classical control theory have been pointed out, and a root-locus
approach to steady-state controller design is included. A chapter on optimal
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control of polynomial systems is included to provide a background for further
study in the field of adaptive control. )

This book is dedicated to my teachers: J. B. Pearson, who gave me the
initial excitement and passion for the field; E. W. Kamen, who tried to teach
me persistence and attention to detail; B. L. Stevens, who forced me to
consider applications to real situations; R. W. Newcomb, who gave me
self-confidence; and A. H. Haddad, who showed me the big picture and the
humor behind it all. It is also dedicated to my students, who forced me to take
the work seriously and become a part of it.”

Acknowledgments and grateful thanks are due to Pam Majors and Peggy
Knight, without whose monumental efforts at typing and meeting deadlines
this book would not be a reality, and to Mary Ann Tripp, who converted my
incomprehensible hand-drawn sketches into the figures in their final forms.

FrANK L. LEWIS

Atlunta, Geo}gia
January 1986
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1
STATIC OPTIMIZATION

In this chapter we discuss optimization when time is not a parameter. The
discussion is préparatory to dealing with time-varying systems in subsequent
chapters. A reference that provides an excellent treatment of this material is
Bryson and Ho (1975), and we shall sometimes follow their point of view.

Appendix A should be reviewed, particularly the section that discusses
matrix calculus.

1.1 OPTIMIZATION WITHOUE CONSTRAINTS

A scalar performance index L(u) is given that is a function of a control or

decision vector u € R™. We want tp e;]ect the value of u that resyits in a
minimum value of L(u).

To solve this optimization problem, wme the Taylor series expansion for an
increment in L as

dL = LY du + gauTL;,,q.i + 0(3), €1.1-1)

where O(3) represents terms df order three. The gradient of L with respect to u
is the column m vector

- (112)
' du
and the bessian matrix is
L -2k (11-3)
o u?
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L,, is called the curvature matrix. For more discussion on these quantities, see
Appendix A. Note that the gradient is defined throughout the book as a
column vector, which is at variance with some authors, who define it as a row
vector.

A critical or stationary point occurs when the increment dL is zero to first
order for all increments du in the control. Hence

L,=0 (1.1-4)

for a critical point.
Suppose that we are at a critical point, so L, = 0 in (1.1-1). In order for the
critical point to be a local minimum, we require that

dL =4du" L, du+ O(3) (1.1-5)

be positive for all increments du. This is guaranteed if the curvature matrix L,
is positive definite,

L, >0. (1.1-6)

If L, is negative definite, the critical point is a local maximum; and if L,,
is indefinite, the critical point is a saddle point. If L,, is semidefinite, then
higher terms of the expansion (1.1-1) must be examined to determine the type
of critical point. '

Recall that L,, is positive (negative) definite if all its eigenvalues are
positive (negative), and indefinite if it has both positive and negative eigenval-
ues, all nonzero. It is semidefinite if it has some zero eigenvalues. Hence if
|L,.} =0, the second-order term does not completely specify the type of
critical point.

Example 1.1-1: Quadratic Surfaces

Let u € R? and

L(u)=*;ur[‘qli; Z;]u+[sl s, u (1)
21,70u + S‘Tu. - 2)
The critical point is given by
L,=Qu+S=0 (3)
or
w=-0's. C

where u* denotes the optimizing control.
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The type of critical point is determined by examining the hessian

L,=¢. (5)

The point «* is a minimum if L, > 0, or (Appendix A) g;; > 0, ¢,,¢2; — ¢ > 0.
It is a maximum if L,, <0, or g, <0, gy192 — 95 > 0. If |Q| <0, then u* is a
.saddle' point. If |Q] = 0, then u* is a singular point and we cannot determine whether it
is a minimum or a maximum from L, .

By substituting (4) into (2) we find the extremal value of the performance index to
be

L*2 [ (u*) =3isTQ 00 's—STQ 'S
= -isTg''s. (6)
Let
11
L=§uT[l 2]u+[0 1]u. (7)
Then

oot

is a minimum, since L,, > 0. Using (6). we see that the minimum value of L is
L* = — 1 |

The contours of the L(u) in (7) are drawn in Fig. 1.1-1, where u = [« u,]7. The
arrows represent the gradient :

(9)

u +u,
Ly=Qu+S= u, +2u, + 1}

Note that the gradient is always perpendicular to the contours and pointing in the
direction of increasing L(u). ) ]

We shall use an asterisk to denote optimal values of u and L when we want
to be explicit. Usually, however. the asterisk will be omitted.

Example 1.1-2:  Optimization by Scalar Manipulations
We have discussed optimization in terms of vectors and the gradient. As an alternative
approach, we could deal entirely in terms of scalar quantities.

To demonstrate, let '

I4(u,,u2)==§u,2+uluz+ ul +uy, 1)

where u, and u, are scalars. A critical point occurs where the derivatives of L with
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/
/

FIGURE 1.1-1 Contours and the gradient vector.

respect to all arguments are equal to zero:

aL
—au—l=ul+u2=0, (2a)
dL
‘372'“1+2u2+1=0. (2b)

Solving these simultaneous equations yields
u, =1, U, = -1, (3)

s0 a critical point is (1, —1).

Note that (1) is an expanded version of (7) in Example 1.1-1, so we have just derived
the same answer by another means. ‘

Vector notation simplifies the bookkeeping involved in dealing with multidimen-
sional quantities, and for that reason it is very attractive for our purposes. ]
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1.2 OPTIMIZATION WITH EQUALITY CONSTRAINTS

Now let the scalar performance index be L(x,u), a function of the control
vector u € R™ and an auxiliary (state) vector x € R". The problem is to select
u to minimize L{x, u) and simultaneously satisfy the constraint equation

f(x,u).=0. (1.2-1)

The auxiliary vector x is determined for a given u by the relation (1.2-1), so
that f is a set of n scalar equations, f € R".

To find necessary and sufficient conditions for a local minimum also
satisfying f(x,u) = 0, we shall proceed exactly as we did in the previops
section, first expanding dL in a Taylor series and then examining the first- and
second-order terms. Let us first gain some insight into the problem, however,
by considering it from three points of view (Bryson and Ho 1975, Athans and
Falb 1966).

Lagrange Multipliers and the Hamiltonian

At a stationary point, dL is equal to zero to first order for all increments du
when df is zero. Thus we require that

dL = LTdu+ LTdx =0 (12-2)
and

df = f,du + f.dx = 0. (1.2-3)

Since (1.2-1) determines x for a given , the increment dx is determined by
(1.2-3) for a given control increment du. Thus, the Jacobian matrix f, is
nonsingular and

dx = —f]f, du. (1.2-4)

Substituting this into (1.2-2) yields
dL= (LT - LTf;'f,) du. (1.2-5)
The derivative of L with respect to u holding f conétam is therefore given by

aL

| = (L= L if,) =L~ fIL, . (1.2-6)

df=0

A

where 7T means (f;')". Note that
daL

=L,. 1.2-7
™ (12-7)

u
dx=0
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In order that dL equal zero to first order for arbitrary increments du when
df = 0, we must have

L,~ 1L, =0 (1.2-8)

This is a necessary condition for a minimum. Before we derive a sufficient
condition, let us develop some more insight and a very valuable tool by
examining two more ways to obtain (1.2-8).

Write (1.2-2) and (1.2-3) as

ar] (LT Lr[ax
= = 0. (1.2-9)

df fo o fu || du
This set of linear equations defines a stationary point, and it must have a
solution [dxTdu™]". The only way this can occur is if the (n + 1) X (n + m)

_coefficient matrix has rank less than » + 1. That is. its rows must be linearly
dependent so there exists an n vector A such that

LT T
[1 AT][ * L“] =0, (1.2-10)
f} fu N
Then ’
LT+ \Tf, =0, (1.2-11)
LT+ A7, = 0. {(1.2-12)

Solving (1.2-11) for A gives
N=-LTft, (1.2-13)

and substituting in (1.2-12) again yields the condition (1.2-8) for a stationary
point.
It is worth noting that the left-hand side of (1.2-8) is the transpose of the
Schur complement of LT in the coefficient matrix of (1.2-9) (Appendix A).
The vector A € R" is called a Lagrange multiplier, and it will turn out to be
an extremely useful tool for us. To give it some additional meaning now, let
du = 0 in (1.2-2), (1.2-3) and eliminate dx to get

dL = LTf ' df. (1.2-14)

Therefore

A
Ui

R (1219)

7 ldu=0
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so that — A is the partial of L with respect to the constraint holding the control
u constant. It shows the effect on the performance index of holding the control
constant when the constraints are changed.

As a third method of obtaining (1.2-8), let us develop the approach we shall
use for our analysis in subsequent chapters. Adjoint the constraints to the
performance index to define the Hamiltonian function

H(x,u,X) = L(x.u) +Af(x.u). (1.2-16)
where A € R” is an as yet undetermined Lagrange multiplier. To choose x. 1,

and A to yield a stationary point, proceed as follows.
Increments in H depend on increments in x, u, and A according to

dH = HYdx + HY du + HJd\. (1.2-17)

Note that
’ H oH (1.2-18)
V= 5y~ w. 218)

so suppose we choose some value of u and demand that
H,=0.~ . (1.2-19)

Then x is determined for the given u by f(x,u) = 0, which is the constraint
relation. In this situation the Hamiltonian equals the performance index:

H),.,= L. (1.2-20)

Recall that if f = 0. then dx is given in terms of du by (1.2-4). We should
rather not take into account this coupling between du and dx. so it is
convenient to choose A so that

H, =0. (1.2-21)

Then, by (1.2-17), increments dx do not contribute to dH. Note that this yields
a value for A given by

=L +fA=0 (1.2-22)
Bx

or (1.2-13).
If (1.2-19) and (1.2-21), hold, then

dL = dH = H] du. (1.2-23)
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since H = L in this situation. To achieve a stationary point, we must therefore
finally impose the stationarity condition

H,=0. (1.2-24)

In summary, necessary conditions for a minimum point of L(x, u) that also
satisfies the constraint f(x, u) = 0 are .

dH o

N =f=0, (1.2-25a)
— =L, +fA=0 2-

o = L fe , (1.2-25b)
dH

3“—' =L,+ fuT)\ =0, (1.2-25¢)

with H(x,u, A) defined by (1.2-16). The way we shall often use them, these
three equations serve to determine x, A, and u in that respective order.
Compare the last two of these equations to (1.2-11) and (1.2-12).

In most applications we are not interested in the value of A, but we must
find its value since it is an intermediate variable that allows us to determine the
quantities of interest, ¥, x, and the minimum value of L.

The usefulness of the Lagrange-multiplier approach can be summarized as
follows. In reality dx and du are not independent increments, because of
(1.2-4). By introducing an undetermined multiplier A, however, we obtain an
extra degree of freedom, and A can be selected to make dx and du behave as if
they were independent increments. Setting independently to zero the partials of
H with respect to all arguments as in (1.2-25) therefore yields a stationary
point. (Compare this with Example 1.1-2.) By introducing Lagrange multi-
pliers, we have thus been able to replace the problem of minimizing L(x, u)
subject to the constraint f(x,u) =0 with the problem of minimizing the
Hamiltonian H(x, u, A} without constraints. -

Conditions (1.2-25) determine a stationary point. We are now ready to
derive a test that guarantees that this point is a minimum. We shall proceed as
we did in Section 1.1.

Write Taylor series expansions for increments in L and f as

dL = LT LI][Z:] + idxT duT][t’” i][jz] + 0(3),

(1.2-26)
df = [/, f.][:]+%[dx’ duT][;?"‘ ;”Hz]Jro(s), (1.2-27)
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where

af
dudx

fxué

and so on. (What are the dimensions of f,,?)
To introduce the Hamiltonian, use these equations to see that

[1 AT][(ZI;]=[HJ H,,T][Z;]+§[de duT][g” 5 Hjx]+o(3)

(1.2-28)

Now, for a stationary point we require f = 0, and also that dL be zero to
first order for all increments dx, du. Since f is held equal to zero, df is also
zero, and so these conditions require H, = 0 and H, = 0 exactly as in (1.2-25).

To find sufficient conditions for a minimum, let us examine the second-order
term. First, it is necessary to include in (1.2-28) the dependence of dx on du.
Hence, let us suppose we are at a critical point so that H, =0, H, =0, and
df = 0. Then by (1.2-27)

dx = —f 'f,du+ 0(2). ~ (1.2-29)
Substituting this relation into (1.2-28) yields

1
dL = L du™[-f1fT 1][’;”‘ Z ][ flf]d +0(2).

(1.2-30)

To ensure a minimum, dL in (1.2-30) should be positive for all increments
du. This is guaranteed if the curvature matrix with constraint f equal to zero

H H _ft
L.{ué Luu|[= [_f“'l‘fx—T I][Hxx qu][ f; fu]

= H,, — Y H, — Ho [T+ AHGL, (12°31)

is positive definite. Note that if the constraint f(x, u) is 1denncally zero for all
x and u, then (1.2-31) reduces to L, in (1.1-6).

If (1.2-31) is negative definite (indefinite), then the stationary pomt is a
constrained maximum (saddle point).



