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preface

High-frequency circuit design is written for those interested in a practical
approach to the design of high-frequency amplifiers, oscillators, and filters. It
will be valuable to technology and engineering students, practicing designers in
the communications industry, and to experimenters and radio amateurs. The
material complements a number of first-level communications circuit texts that
are available and so concentrates on topics not normally covered by them in
sufficient depth for design work.

This book is the outgrowth of a sixth semester course taught to technology
students at Humber College. For maximum benefit, the reader should therefore
have the equivalent of a course in ac circuit theory and the associate vector
algebra and should also have completed a first-level course in communication
circuits and modulation and demodulation. The mathematics within this book
stays at the algebra level and involves no calculus.

Chapter 1 describes the circuitry problems that must be considered
during the design process. These include internally generated noise and non-
linear amplitude and phase characteristics, all of which can distort a signal as it
passes through a communication system.

Chapter 2 discusses the practical nature of passive components and how
their characteristics change with frequency, temperature, and in some cases,
with the signal amplitude. The proper selection of components is necessary to
make the final product operate as well as the initial paper work design.
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The circuitry design begins with Chapter 3 where procedures for design-
ing narrow passband filters to meet given bandwidth and skirt requirements are
explained. A description of crystal and ceramic filters is included, not so much
because the reader is likely to be designing them, but more for an explanation
of the principles involved that may be useful in other filter designs.

Modern filter design, in Chapter 4 is a topic normally found only in
high-level texts buried in a lot of mathematics. The general properties of filters
are presented first, and then a specific description of input impedance, attenua-
tion and delay characteristics are given for a group of standard designs. With
the graphs, tables, and formulas provided the reader can design a filter to
custom fit his exact requirements and with very good predictability.

For the student interested in a bit of the mathematical background to
modern filters, Appendix 4A describes the s-plane and its relation to filter
characteristics and also demonstrates how filter component values can be
extracted from polynomial equations that describe the desired response.

To preserve precious signal levels, both large and small, communication
circuits often require impedance-matching networks that will transfer maxi-
mum power from a source to a load. Often these are required to have
bandwidths of varying amounts and provide specific attenuation outside of the
passband. Designs to meet all requirements are given and are handled both
mathematically and graphically—on the Smith chart.

As operating frequencies climb, the characteristics of transistors, be they
bipolar or field effect, change. Their gains drop, input and output impedances
decrease and become reactive, and stability decreases. Chapter 6 then serves as
background information for the remaining chapters—all dealing with active
circuits. The first of the active circuits are the small linear amplifiers commonly
used in receivers. Chapter 7 concentrates on the design of such amplifiers and
shows how to control internal noise, provide automatic gain adjustment,
improve stability, and use alternate configurations to best ability.

Chapter 8 discusses oscillator circuits; what should be considered and how
to design and measure the results. The traditional Colpitts and Hartley designs
are presented and then the more modern technique of frequency synthesis is
described. To fully appreciate this section the student may wish to brush up on
the operation of logic gates first.

Chapter 9 is a collection of circuits common to transmitters and begins
with a description of the specialized RF power transistor, often as complex as
any integrated circuit. The chapter continues with the design of power ampli-
fiers and how to amplitude modulate them.

Chapter 10 is a collection of receiver circuits, in particular the more
critical areas which include the mixer and the detector sections. AM and FM
IF amplifiers are also described.

It is a rare author who works completely by himself without outside help.
In this case the author is very thankful for all the help received both from
business associates and personal friends; without them there would be no book.



In particular I wish to heartily thank Linda Vince and Christine Adam for
their expert typing of the manuscript, Lou Hale of Garrett Manufacturing for
his assistance in providing information on components, and Bob Vince for his
photographic advice. I also wish to thank my wife Patricia for her typing,
drawing, and moral support throughout the project. A special thanks also to
that special group of friends who provided both technical and moral support.

I hope that the readers enjoy the use of this material as much as the

author did in writing it.
Jim Hardy

Georgetown, Ontario
July, 1978
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chapter 1

signal distortion

The purpose of any communication system is to carry information from one
place to another. However, for various reasons, the received signal will always
be of poorer quality than the transmitted signal. Some of the frequency
components may be of the wrong amplitude or missing altogether, new
frequencies may appear, the relative time relation of the signals may be altered,
and random neise may contaminate everything. Careful control of these
problems during the circuit design will result in a more useful product.

1-1 THERMAL (JOHNSON) NOISE

Whenever resistance appears in a circuit, whether actual resistors for biasing or
Jjust losses in components, noise will be generated. Thermal noise is caused by the
random movements of free electrons in any conductor. If the conductor has any
resistance, a noise voltage will be generated. Since the electron movement
increases with temperature, the noise voltage will, too. The average amplitude
of this noise will be constant at all frequencies, and so the noise is white. (Pink
noise has an amplitude that decreases with frequency.) The appearance of
white noise on an oscilloscope is shown in Figure 1-1.

5 5)1\32



2 SIGNAL DISTORTION

Voltage ‘} Probability

¢] Time

-— — \oltage

(a) (b)

Figure 1-1 Typical white-noise voltage (a) and the probability of any
voltage occurring (b).

At any instant, the amplitude of the noise voltage could be anything from »
very small to very large values. As shown by the probability curve, it is most
likely that the amplitudes will be small; but, theoretically, spikes of infinite
amplitude could occur. Noise cannot, therefore, be measured as peak voltages,
and so the rms value must always be used. The open-circuit noise voltage across
the terminals of a resistor is given by,

¢, =V4KTBR volts (rm.r) (I-1)

where: K = Boltzmann’s constant
=1.38X10"2J/°K
T = absolute temperature (°C + 273)
R = resistance ()
B = bandwidth (Hz)

EXAMPLE 11

What noise voltage is generated in a 50-{ resistor at room tempera-
ture if the measuring instrument has a 1.0-MHz effective bandwidth?

Solution
Room temperature will be taken as +20°C or 293 °K.
¢, =V4KTBR
=V4x1.38x10"2x293 X 1.0X 10°x50
= 0.899 uV rms ’

If the 50-Q resistor used in this example was actually the source
resistance of a signal generator, the normal output signal ‘would be



1-2 SHOT (SCHOTTKY) NOISE 3

contaminated with noise as shown in Figure 1-2. Therefore, when any
signal generator is used for testing, this noise must be taken into account.

A

at source

+V

o] Time

Figure 1-2 Output of a signal generator will contain some thermal noise
produced in its source resistance.

The ratio of signal voltage to noise voltage irom the generator is

S _ signal voltage (rms)
N ratio noise voltage (rms) (1-2)
s . signal voltage
or T ratio (dB) = 20 loglo( noise voltage ) (1-3)

It is normally assumed that all the generator noise is thermally produced
in the source resistance and that the source resistance is room tempera-
ture (290°K). However, it would be easy to make a poor-quality
oscillator that has a noise level far above the thermal level; fortunately, it
would not sell very well.

1-2 SHOT (SCHOTITKY) NOISE

The second major source of noise in communication circuits is produced when
current flows in any active device, be it bipolar or field-effect transistor, diode
or vacuum tube. This noise is also white and has exactly the same appearance
and probability distribution, as shown in Figure 1-1. Again, rms values must be
used for its measurement, but in this case, it is usually expressed as a current.
For a semiconductor diode,

=V 2¢IB amperes (gms) (1-4)
where: ¢ = charge on an electron
=160x 107" C

I = bias current (A)
B = bandwidth (Hz)



4 SIGNAL DISTORTION

For bipolar transistors, the equation differs somewhat, since two currents and
two junctions are involved. The noise produced in a transistor will be discussed
in Chapter 6.

1-3 AMPLIFIER NOISE FIGURE

Because of thermal and shot noise produced in an amplifier, the signal at the
output will have a higher percentage of noise than the input signal did. The
amount of noise added will then determine how small a signal the amplifier
can detect. A useful measure of this performance is the noise factor and
corresponding noise figure:

S/,

noise factor = W (1-3)
S,/ N,
noise figure = 2010g,0( Slel ) dB (1-6)

where:  §; = input signal voltage

N, = thermal input noise voltage
from the source resistance

S, = output signal voltage equal
to §; X amplifier gain

N, = total output noise made up of
the amplified input plus any added
noise

Typical noise figure for several types of low-noise amplifiers are shown in
Figure 1-3, The problem of obtaining low-noise figures at the higher frequen-
cies is mainly due to the difficulty of obtaining reasonable power gains at those

frequencies. 7

Noise figure (dB)

Parometric amplifier

30 300 3000 306
Frequency (MHz)

Figure 1-3 Noise figures that can be obtained with various types of
low-noise amplifiers.



1-4  MEASUREMENT OF NOISE FIGURE

14 MEASUREMENT OF NOISE FIGURE

The noise figure (or factor) can be measured in one of two ways, depending on the
type of generator used. The easiest measurement requires a calibrated noise
source. This usually consists of a vacuum-tube diode whose dc plate current is
controlled by changing the filament temperature (saturated operation). The

shot noise from the tube is then added to the thermal noise of a 50-{ resistor

that acts as the source resistance of the noise generator. The excess shot noise
can then be calibrated on a meter in terms of plate current.

To measure noise figure, the noise source is connected to the input of the
receiver to be tested, and a true rms voltmeter is connected to the receiver
output. (Since linearity is important, any automatic gain control’ must be
defeated, so the voltmeter may have to be connected ahead of the receiver’s
detector.) With the noise source turned off, the voltmeter will read some level
corresponding to the internally generated receiver noise plus the thermal noise
from the generator’s source resistance. The noise source is then turned on and
adjusted so that the output noise level increases by 3 dB; the more excess noise
that must be generated, the more noise the receiver is adding itself. The noise
figure is then simply read off the meter of the noise generator. Figure 1-4 shows
the general form of the noise generator and test setup. The big advantage of
this measurement technique is that the receiver’s gain and bandwidth char-
acteristics do not have to be known, since the noise generator’s output voltage is

(-

Noise diode

Receiver "

r___H_——@ —] Input

Thermal noise =
50 0 é

L L

Figure 14 White-noise generator connected to a receiver for a noise-fig-
ure test. The rms voltmeter must be connected to a linear point in the
receiver, which usually means ahead of the final detector.
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