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Preface

This volume contains the papers selected for presentation at IPCO VIII, the
Eighth Conference on Integer Programming and Combinatorial Optimization,
Utrecht, The Netherlands, 2001. This meeting is a forum for researchers and
practitioners working on various aspects of integer programming and combina-
torial optimization. The aim is to present recent developments in theory, compu-
tation, and application of integer programming and combinatorial optimization.
Topics include, but are not limited to: approximation algorithms, branch and
bound algorithms, computational biology, computational complexity, computa-
tional geometry, cutting plane algorithms, diophantine equations, geometry of
numbers, graph and network algorithms, integer programming, matroids and
submodular functions, on-line algorithms, polyhedral combinatorics, scheduling
theory and algorithms, and semidefinite programs.

IPCO was established in 1988 when the first IPCO program committee was
formed. The locations and years of the seven first IPCO conferences were; IPCO
I, Waterloo (Canada) 1990, IPCO II, Pittsburgh (USA) 1992, IPCO III, Er-
ice (Italy) 1993, IPCO IV, Copenhagen (Denmark) 1995, IPCO V, Vancouver
(Canada) 1996, IPCO VI, Houston (USA) 1998, IPCO VII, Graz (Austria) 1999.
IPCO is held every year in which no MPS (Mathematical Programming Society)
International Symposium takes place. Since the MPS meeting is triennial, [IPCO
conferences are held twice in every three-year period. As a rule, IPCO is held
somewhere in Northern America in even years, and somewhere in Europe in odd
years.

In response to the call for papers for IPCO 2001, the program committee
received 108 submissions, indicating a strong and growing interest in the confe-
rence. The program committee met on January 13 and 14, 2001, in Amsterdam,
The Netherlands, and selected 32 contributed papers for inclusion in the scien-
tific program of IPCO 2001. The selection was based on originality and quality,
and reflects many of the current directions in integer programming and opti-
mization research. The overall quality of the submissions was extremely high.
As a result, many excellent papers could unfortunately not be chosen.

The organizing committee for IPCO 2001 consisted of Karen Aardal, Bert
Gerards, Cor Hurkens, Jan Karel Lenstra, and Leen Stougie. IPCO 2001 was
organized in cooperation with the Mathematical Programming Society, and was
sponsored by BETA, CQM, CWI, DONET, The Netherlands Society for OR.
(NGB), EIDMA, ILOG, IPA, Philips Research Labs, Technische Universiteit
Eindhoven, the Technology Foundation STW, and Universiteit Utrecht.

April 2001 Karen Aardal
Bert Gerards
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Two O(log" k)-Approximation Algorithms for
the Asymmetric k—Center Problem

Aaron Archer*

Operations Research Department, Cornell University, Ithaca, NY 14853
aarcher@orie.cornell.edu

Abstract. Given a set V of n points and the distances between each
pair, the k-center problem asks us to choose a subset C C V of size k that
minimizes the maximum over all points of the distance from C to the
point. This problem is NP-hard even when the distances are symmetric
and satisfy the triangle inequality, and Hochbaum and Shmoys gave a
best-possible 2-approximation for this case.

We consider the version where the distances are asymmetric. Panigrahy
and Vishwanathan gave an O(log* n)-approximation for this case, leading
many to believe that a constant approximation factor should be possible.
Their approach is purely combinatorial. We show how to use a natural
linear programming relaxation to define a promising new measure of
progress, and use it to obtain two different O(log* k)-approximation al-
gorithms. There is hope of obtaining further improvement from this LP,
since we do not know of an instance where it has an integrality gap worse
than 3.

1 Introduction

Suppose we are given a road map of a city with n buildings where we wish to
offer fire protection, along with the travel times (a distance function) between
each pair of buildings, and suppose we are allowed to make k of the buildings into
fire stations. Informally, the asymmetric k-center problem asks how to locate the
fire stations (centers) in order to minimize the worst case travel time to a fire
(the covering radius). It is common to assume the distance function is symmetric
and satisfies the triangle inequality. Without the triangle inequality, it is NP-
hard even to decide whether the k-center optimum is finite, by a reduction from
set cover. So we require the distances to satisfy the triangle inequality, which
also makes sense when we think of them as travel times. But distances may be
asymmetric due to one-way streets or rush-hour traffic, so in this paper we do
not require symmetry.

The asymmetric k-center problem has proven to be much more difficult to
understand than its symmetric counterpart. In the early 1980’s, Hochbaum and
Shmoys [6,7] first gave a simple 2-approximation algorithm for the symmetric

* Supported by the Fannie and John Hertz Foundation and ONR grant AASERT
N0014-97-10681.

K. Aardal, B. Gerards (Eds.): IPCO 2001, LNCS 2081, pp. 1~14, 2001.
© Springer-Verlag Berlin Heidelberg 2001




2 A. Archer

variant. Shortly thereafter, Dyer and Frieze [4] found another 2-approximation.
These results essentially closed the problem because this approximation guar-
antee is the best possible, by an easy reduction from set cover. However, no
non-trivial approximation algorithm was known for the asymmetric version un-
til Panigrahy and Vishwanathan [14,13] gave an O(log* n)-approximation more
than ten years later.

The k-center problem is one of the basic clustering problems. Uncapacitated
facility location and k-median are two other prominent ones, and both of these
admit constant-factor approximations in the symmetric case (see [2] for the cur-
rent best factors). But in the asymmetric case, the best results yield O(logn)
factors [5,10], relying on clever applications of the greedy set cover algorithm.
Moreover, a natural reduction from set cover gives inapproximability results
that match these bounds up to a constant [1]. In stark contrast, it is now widely
believed that a constant-factor approximation algorithm should exist for the
asymmetric k-center problem. This conjecture is prompted by the O(log* n) re-
sult of [13], especially since no hardness of approximation result is known beyond
the lower bound of 2 inherited from the symmetric version.

In this paper we introduce a natural linear programming relaxation that
seems a promising step towards a constant-factor approximation. Our LP is
essentially a set cover LP derived from an unweighted directed graph, where the
optimal k-center solution corresponds to an optimal integral cover (dominating
set). Whereas this LP has an O(log n) integrality gap for the set cover problem, it
behaves better in our context because k-center has a different objective function.
The LP objective is the number of fractional centers chosen, whereas the k-
center objective is the covering radius. We present two O(log* k)-approximation
algorithms for the asymmetric k-center problem, both of which use the fractional
centers given by the LP solution as a guide. There is hope that our LP might be
used to obtain further improvements since we do not know of any instances where
it has an integrality gap worse than 3 for the asymmetric k-center problem.!

The O(log™ n) algorithm of [13] is entirely combinatorial. Essentially, it uses
the greedy set cover algorithm to choose some (too many) centers, and then
recursively covers the centers until the correct number remain. The advantage
of working with our LP is that it gives us fractional center values to guide our
algorithm and measure its progress. Rather than choosing centers to cover the
nodes of our graph, we instead try to efficiently cover the fractional centers.

The crux of the first algorithm is our EXPANDINGFRONT routine. We se-
lect centers greedily, hoping to cover lots of fractional centers, because we are
covering within two steps what these fractional centers covered within one. For
this strategy to succeed, we need to somehow guarantee that the centers we
choose cover many fractional centers. The key idea here is that as we choose
more centers, the set A of active centers that remain to be covered shrinks, as
does the number of centers necessary to cover them. We show that the amount
of progress we make at each step grows substantially as the size of the optimal

! Here we use integrality gap in a slightly non-standard sense. See the remarks in
Section 3 for details.
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fractional cover of A shrinks, so it is important to reduce this quantity rapidly.
The fractional center values from the LP allow us to enforce and measure this
shrinkage.

We can also use the fractional centers to modify the algorithm of [13] to obtain
the same O(log* k) performance guarantee. Our RECURSIVECOVER routine uses
them to obtain an initial cover with fewer centers than the initial cover produced
in [13], then employs precisely the same recursive set cover scheme to finish.

Since achieving a constant-factor approximation seems difficult, it is natural
to attempt to find a bicriterion approximation algorithm that blows up both the
number of centers and the covering radius by a constant factor. This might seem
to be a significantly easier task, but in fact [13] shows this would essentially
give us a constant-factor unicriterion approximation. This is because we can
preprocess the problem with the REDUCE routine of Section 6, and postprocess
our solution by recursively covering the centers we chose, as in Section 5.

2 Formal Problem Definition and Notation

The input to the asymmetric k-center problem is a parameter k, a set V of n
points, and a matrix D specifying a distance function d : V x V = R, U {oc}.
Think of d(u,v) as the distance from u to v. We require our distance function
to obey the triangle inequality, but not symmetry. That is, d(u,w) < d(u,v) +
d(v,w) for all u,v,w € V, but d(u,v) may differ from d(v, u).

Any set of centers C C V with |C| < k is a solution to the k-center problem.
The covering radius of a solution C is the minimum distance R such that every
point is within R of the set C. (It could be 00.) The goal is to find the solution
with the minimum covering radius R*.

We will find it convenient to work with unweighted directed graphs on node
set V instead of on the space (V, D) directly. With respect to a directed graph
G = (V,E), we define (for i € Z,)

IF(u)={v € V :G contains a directed path from u to v using at most ¢ edges}.

Conversely, I';” (u) is the set of nodes from which u can be reached by a directed
path using at most ¢ edges. We suppress the subscript when i = 1. Thus I't (u)
is u plus its out-neighbors, and I~ (u) is u plus its in-neighbors. For § C V
we define I'(S) and I} (S) analogously. In G, we say S covers T within i {(or
i-covers T) if I'7(S) D T. When i = 1, we just say S covers T.

For R > 0, we define the graph Gr = (V, Eg), where Eg = {(u,v) : d(u, v) <
R}. The essential connection here is that there exist k centers that cover all of G R
if and only if R > R*. Thus we can binary search for the optimal radius R* and
work in G- . Finding an i-cover in this graph will yield an i-approximation in the
original space, since traversing each edge in the graph corresponds to moving at
most R* in the original space. Moreover, in the worst case this analysis is tight,
because our given distances could be those induced by shortest directed paths
in an unweighted graph.
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For y € RS, let y(S) denote }_, ¢ ¥, For a function g, let g% denote the
function iterated i times. Finally, define log* z = min{i : log® z < 2}

3 Overview of the Algorithm

We describe a polynomial time relaxed decision procedure AKC (see Figure 2),
which takes as input an asymmetric k-center instance and a guess at the optimal
radius R, and either outputs a solution of value O(Rlog" k) or correctly reports
that R < R*. Since R* = d(u, v) for some u,v € V, there are only O(n?) different
possible values for R*. We binary search on R, using at most O(logn) calls to
AKC to yield a solution of value O(Rlog™ k) for some R < R*, which gives our
O(log* k)-approximation algorithm. Thus, by guessing the covering radius R, we
immediately convert the optimization problem into a promise problem on Gp
and thereafter think only in terms of this graph and others derived from it.

Theorem 1 Given a parameter R and an asymmetric k-center instance
(V, D, k) whose optimum is R*, AKC (V, D, k, R) runs in polynomial time and
either proves that R < R* or outputs a set C of at most k centers covering V
within R(3log” k + O(1)).

The general framework we use was introduced by [13]. There are two sub-
stantive components -~ a preprocessing phase called REDUCE, and the heart of
the algorithm, which we call AUGMENT. In addition, our version of AKC solves
an LP. We can solve the LP in polynomial time, and it will be clear that our
algorithms for REDUCE and AUGMENT run in polynomial time. Thus AKC runs
in polynomial time.

We present two different ways to implement the AUGMENT phase, EXPAND-
INGFRONT (Section 4) and RECURSIVECOVER (Section 5), each of which im-
proves the approximation guarantee from O(log* n) to O(log* k). For complete-
ness, we also describe the REDUCE phase in Section 6, slightly sharpening the
analysis given in [13] to improve the constant inside the O(log” k) from 5 to 3.
We now describe how REDUCE and AUGMENT fit together.

Assume we have a graph G, and we are promised that there exist k centers
covering G. Then AUGMENT finds at most %k centers that cover all of G within
log* k + O(1). How do we obtain a solution that uses only k centers? Roughly
speaking, we will prove that if there are k centers that cover V, then there exist
%k centers 3-covering V. So we can run AUGMENT in G3, the cube of G, to find
k centers that cover all of V in G within 3log* k + O(1).

More precisely, the REDUCE phase preprocesses the graph G by choosing an
initial set C of at most k centers consisting of some special nodes, called center
capturing vertices. These centers already cover part of V within some constant
radius. The set of nodes that remain to be covered we call the active set, and
denote it by A. We prove that there exist p < 2(k — |C|) centers 3-covering A.
Then, again roughly speaking, we use the AUGMENT procedure in G3 to augment
C by at most %p new centers to a set of at most k centers covering V within
log” p+ O(1) in GB.
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Our LP, with respect to G=(V,E) and ACV

min y(V)
st. y(I'"(v))21forallve A
y20

Fig. 1. Here is our set cover-like LP, defined with respect to some graph G with nodes
V and an active set A of nodes to be covered. Recall the notation y(S) = Y ves Yo

Both EXPANDINGFRONT and RECURSIVECOVER use the linear program of
Figure 1. In this LP, if we further restrict y € {0,1}V, the resulting integer
program asks for the smallest set of centers necessary to cover A. This is just a set
cover problem where A is the set of elements to be covered, and {ANIt(v):v €
V} is the collection of sets. We think of any solution y as identifying fractional
centers, so y is a fractional cover of A. We note that our AUGMENT phase does
not require there to exist an integral cover with p centers, nor does it require y
to be an optimal fractional cover. It suffices to have any fractional cover with at
most p fractional centers. We use these fractional centers to guide the AUGMENT
procedure.

The following two theorems (proved in Sections 6 and 4.2, respectively) sum-
marize the technical details. When put together with the precise description of
AKC in Figure 2, Theorem 1 follows.

Theorem 2 Given a directed graph G for which there is a cover using k centers,
REDUCE (G) outputs a set of centers C and an active set A = VA}H(C) such
that there exists a 3-cover of A using at most -32-(k —|C]) centers.

Theorem 3 Suppose A = V\I'*(C) in G, y is a fractional cover of A, and
p=y(V). When AUuGMENT (G, A,C, v, p) is implemented with either EXPAND-
INGFRONT or RECURSIVECOVER, it augments C by at most %p additional cen-
ters to cover A within log* p+ O(1) in G.

We show two different ways to implement the AUGMENT phase, each produc-
ing a (log® p+ O(1))-cover. The first, EXPANDINGFRONT, introduces the idea of
choosing centers to cover fractional centers, and shows how to use the LP to
make our future choices more efficient by reducing the number of fractional cen-
ters necessary to cover the new active set. The second, RECURSIVECOVER, shows
how to combine the fractional center covering idea with the recursive set cover
technique of [13] to obtain the same improvement.

Remarks. Our main contribution is in using the LP solution to define a new
notion of progress based on covering fractional centers. We believe that this LP
and the techniques introduced here may lead to a constant-factor approximation.
Even though our LP has a O(logn) integrality gap for the set cover problem,
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AKC (V,D,k, R)

(C, A) + REDUCE (GRr)
p+ 3(k—1C)
G « G3r plus the edges {(u,v) : u € C,v € I} (C)}
(where I'; (C) is interpreted in Gr) )
solve the linear program of Figure 1 defined by G and A to get y
if y(V) > p then STOP and conclude R < R*
else
p+y(V) X
C « AucMENT (G, A,C,y,p)
output C

Fig. 2. Formal description of AKC.

we do not know of any examples where its integrality gap for the asymmetric
k-center problem is worse than 3. That is, we are not aware of any graphs G
for which there is a fractional cover using k fractional centers but there is no
integral 3-cover using [k] centers.

There is a graph G on 66 nodes that can be covered with 6 fractional cen-
ters, while the smallest integral 2-cover uses 7 centers {12]. This is the smallest
example we know that establishes the LP integrality gap of 3. Probabilistic con-
structions yield an infinite family of graphs on n nodes having a fractional cover
using k fractional centers but admitting no integral 2-cover using fewer than

2(k+/Tog n) centers.

4 Augment Phase: ExpandingFront

Recall that the AUGMENT phase takes as input a directed graph G, a set of
already chosen centers C, an active set A = V\I'*(C) of nodes not already
covered by C, and a solutlon y to the LP of Figure 1, with p = y(V). We wish to
select an additional 3p centers that, along with C, cover A within log*p+O(1)
in G.

4.1 Motivation and Description of ExpandingFront

For motivation, consider the case where C = @ so A is all of V. If there exists a
cover using only g integral centers, then clearly one of these centers v must cover
at least 2 units of fractional centers. That is, y(I't (v)) > B. It turns out that
this resuft holds also when there are ¢ fractional centers coverlng p fractional
centers (see Lemma 4 below, with z = ), and we can apply this observation
with p = ¢. Thus, there exists a node v covering a full unit of fractional centers.

It makes sense to choose such a node as a center, because it 2-covers what
these fractional centers covered. If we could manage to continue covering one
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new unit of fractional centers with each new center we select, then we would use
only p centers to cover all the fractional centers, which means we would 2-cover
all of V. This would yield a 2-approximation.

The problem is that when we choose a new center v, we remove I'* (v) from
A, the active set of fractional centers yet to be covered. To see how many units
of fractional centers our next greedily chosen center covers, we use Lemma 4.
Since y(A), the amount of active fractional centers, decreases, while y(V) is still
D, the best guarantee we can make is that each new greedily-chosen center covers
at least a % fraction of the remaining active fractional centers.

Lemma 4 Let G = (V| E) be a directed graph, ACV, and z € Rﬁ be any set
of non-negative weights on A. Ify € IRK is a fractional cover of A, that is, y is
any feasible solution to the linear program of Figure 1, then there exists ve V
such that

z(4)
y(V)

Proof. We take a weighted average of z(I't(v) N A) over v € V.

1)

2(rt(w)nA) >

1 1
;(V—)I;yvz(l’*’(v)ﬂA) = Yo Y wa

veV uer+(v)nA

1
=mzzu Z Yv

u€A  vel-(u)

1
Z yy 2

u€A

The inequality follows because z > 0 and y(I"~ (1)) > 1 for all u € A. Since some
term is at least as large as the weighted average, we know 2(rt(v)n A) > ﬁe}
for somev e V. O

We might be saved if we somehow knew that the present active set A had
a fractional cover y4 with fewer than p fractional centers. We could then use
Ya instead of y, so the denominator y4 (V) of (1) would decrease along with
the numerator y(A). We can indeed reduce the denominator by the following
observation: for any set S, the nodes in I'*(S) do not help cover any of the
nodes in V\I';f(S). To aid this discussion, we introduce some new notation.

With respect to a graph G and a current set of centers C C V, de-
fine V; = I}(C)\I't,(C), the nodes exactly i steps from from C in G, and
Vi = VI, (C), the nodes at least i steps from C in G. If we consider a di-
rected breadth first search tree from the set C, then V5, consists of the nodes
at and beyond the i** level, so this set shrinks as we add centers to C.

In our motivational example (where initially A = V), when selecting our
first center v with y(I'* (v)) > 1, let us set 4 V>3 (instead of A « V>2). See
Figure 3. Since V; does not help cover A, projecting y onto V>, yields a fractional
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Fig. 3. This illustrates one step of the i = 1 phase of EXPANDINGFRONT.

cover of A, so we can replace y(V) by y(V>2) < p — 1 in the denominator
of (1) for the next greedy choice. Unfortunately, the numerator decreases to
y(A) = y(V>3), which is smaller by exactly y(V3), so the next greedily chosen
center may cover less than one additional unit of fractional centers.

This problem seems to be unavoidable. The difficulty is that y(V2) might be
quite large, say &. Since these fractional centers are no longer in the active set,
our chosen centers may never cover them, so they will always contribute to the
denominator in (1).

The idea of EXPANDINGFRONT is to greedily choose a few centers, then
“flush” the irritating fractional centers trapped at the “front” Vs, by setting
A + V>4. We can then ignore the centers in V; since they no longer help cover
A. This expands the front (the location of the irritating nodes) to radius 3.
In the bad case where y(V3) is large, we flush a lot of fractional centers. We
then repeat this process. The penalty is that each time we flush, we expand the
radius and so we do not get a constant-factor approximation. As it turns out,
we need flush only log* p + O(1) times. See Figure 4 for a precise description.
For simplicity, the algorithm begins with phase i = 0, whereas this motivating
discussion corresponds to the i = 1 phase.

Figure 3 shows part of the breadth first search tree from C at one of the steps
of the i = 1 phase. Suppose v (circled) is the center chosen greedily from Vsa.
Adding it to C' “pulls” it’s out-tree (encircled by the dotted oval) to the left in
the diagram. The shaded area is the “front,” i.e. the irritating strip of nodes that
cause our lower bound on y(I"*(v) N A) from (1) to be less than one. By the end
of phase 0, we had chosen p centers, reducing y(A) to exp(—3)-p =~ 0.472p. We
then moved the front one strip to the right, so we know at most 0.472p fractional
centers are necessary to cover the current A throughout phase 1.
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ExpandingFront (G, A,C,y,p)

fori=0,1,2,... do (“phase” 7)
for j =1,2,...[$£] do (j is just a counter)
if y(A) < 1 then STOP, output C
else
find v € V>41 that maximizes y(I"t (v) N A)
CeC+v
A« A\I'}, | (v) (equivalently, A « V5>,42)
A + V5,13 (expand the front)
(now ya4 is y projected onto V>;42)

Fig. 4. Formal description of EXPANDINGFRONT.

4.2 Analysis of ExpandingFront

At the beginning of each inner loop we have A = V>i+2, so all inactive nodes are
(i+1)-covered by C. If y(A) < 1, then since every v € A is covered by one unit of

fractional centers, some node in I'}} ; (C) must cover v. Hence C (i + 2)-covers all

1

of V. So to prove Theorem 3 for EXPANDINGFRONT it suffices to prove Lemma 6
below, and to show that we do not choose too many centers (Lemma. 10).

Definition 5 Define the tower function T'(n) by T(0) = 1 and T(n+1) = T
forn > 0.

Lemma 6 EXPANDINGFRONT terminates after at most log*p + O(1) phases,
where we call each outer loop a phase.

Proof. Claims 7, 8 and 9 below establish that at the beginning of phase i we
have y(A4) < Z where a; grows like a tower function. This establishes Lemma 6,
since we stop once a; > p. ]

In phase i, since A = V5,42, we take our fractional cover ya to be the
restriction of y to the nodes V5,1, and we work on decreasing y(A), which we
can upper bound using Claim 7 below. Then by expanding the front at the end
of the phase, our old y(A) becomes our new y4(V).

Claim 7 If at the beginning of a phase we have ya(V) = a and we choose b
centers in the phase, then we reduce y(A) at least by a factor of e %,

Proof. Since y4 covers A, each chosen center v satisfies y(I't(v)n A) > y(—aAZ by
Lemma 4. In phase i, choosing v as a center actually reduces y(4) by y(I';4;(v)n
A), but we know how to account only for the reduction due to y(I'*(v) N A).
Thus, each of the b new centers reduces y(A) by a factor of 1-4H< exp(—1).

(W)




