/

S

REAL-TIME

SOFTWARE

- Robert L.Glass

e

e

/

73. &722 ¢
G reg

REAL-TIME
SOFTWARE

ROBERT L. GLASS

ASSISTANT PROFESSOR
SOFTWARE ENGINEERING PROGRAM
SEATTLE UNIVERSITY

5506757

PRENTICE-HALL, INC., Englewood Cliffs, New Jersey 07632

5506759

Library of Congress Cataloging in Publication Data
Main entry under title:
Real-time software.

Collection of papers on computer software.

Bibliography: p. 0000

Includes index.

1. Real-time data processing. 2. Electronic digital
computers-Programming | Glass, Robert L, 1932-
QA76.54.R425 1984 001.64%2 83-3156
ISBN 0-13-767103-2

Editorial/production supervision

and interior design: Karen Skrable
Manufacturing buyer: Anthony Caruso
Cover design: Edsal Enterprises

RoserT L. Glass books published by Prentice-Hall:

SOFTWARE RELIABILITY GUIDEBOOK
SOFTWARE MAINTENANCE GUIDEBOOK
MODERN PROGRAMMING PRACTICES: A REPORT FROM INDUSTRY

Ty i ,,’7 -y
xi/ w t§ g /<L
©1983 by Robert L. Gla ‘)
H ’ /"

All rights reserved. No part of this book
may be reproduced in any form or

by any means without permission in writing
from the publisher.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

ISBN 0-13-?k7103-2

PRENTICE-HALL INTERNATIONAL, INC., LONDON
PRENTICE-HALL OF AUSTRALIA PTY. LIMITED, SYDNEY
EDITORA PRENTICE-HALL DO BRrasiL, LTDA., RIO DE JANEIRO
PrenTice-HALL CANADA INC., TORONTO

PRENTICE-HALL OF INDIA PRIVATE LiMITED, New DELHI
PrenTiCE-HALL OF JAPAN, INC., TOKYO

PRENTICE-HALL OF SOUTHEAST AsIA PTE. LTD., SINGAPORE
WHITEHALL BOOKs LIMITED, WELLINGTON, NEW ZEALAND

PREFACE
AND
SUMMARY

Let me take you into the Software Development Laboratory of a major real-
time project.

Over there, in the dominant position in the room, is the ‘‘target’
minicomputer. It is the computer that will eventually control the real-time
system for which the software is being built. (The software, of course, will con-
trol the computer that controls the system.) The computer is called a target
because it does not contain the facilities—the compilers, assemblers, and
linkers—that generate its code. A “‘host’’ computer, which is located in another
part of the building and is a mainframe, does that job.

Sitting in front of the target computer console are a couple of program-
mers. They look perplexed. The computer’s lights are not blinking; it has ap-
parently stopped, and the programmers are attempting to determine why. From
their conversation, we can tell that one programmer is trying to debug an ap-
plication program; the other programmer evidently wrote the executive pro-
gram that is being used by the application program, and there seems to be a
difference of opinion as to who is to blame for the halt.

All around the programmers, occupying the rest of the Software Develop-
ment Laboratory, are pieces of equipment. The equipment is a replication of
devices that will actually talk to the target computer when the completed system
is working. Cables connect the equipment to the target.

The Laboratory is not pretty. Instead, it looks ... well ... functional.
Only when the Laboratory is transformed, after checkout, into an operational
system will prettiness become a goal.

This is the world of the real-time software engineer. Engineer is the key
word here, where it implies a certain amount of pragmatism and a dogged
determination to make things work.

The programmers at the console have long since removed their coats, and
one wearing a tie has loosened it. A stale cup of coffee sits on a table near the
console, and an ashtray full of half-smoked cigarettes is next to it.

Here, in the Software Development Lab, is the grittiness—and the joy—
of creating software for a real-time system.

The programmers are beginning to raise their voices. Apparently the fault

5506759

v

Vi PREFACE AND S UMMARY

is a complex one, and it really isn’t obvious whose code went wrong. Let’s tip-
toe out.

The scene we have just viewed is characteristic of an environment that is
becoming more and more pervasive. In this book we will see how real-time
systems and real-time software are becoming commonplace. Although they ser-
vice an amazing diversity of applications, the development process and the
overall structure of real-time systems are surprisingly similar. The Lab is one of
those similarities, as are the engineering emphasis and the team approach of the
programmers. They will resolve their problem in the next ten minutes and move
on to another.

The purpose of this book is to explore the world of the real-time pro-
grammer. We may not see things quite as graphically as stepping into that
Laboratory—but there are many intangibles in the real-time software world,
and most of us find them at least as interesting as viewing and touching the
Laboratory hardware.

This book has five main chapters. Chapter 1 gives us an overview of real-
time software. We take a look at some examples of real-time systems, where the
problems lie in these systems, and what real-time software is all about.

In chapter 2 we move on to applications of real-time software. This
chapter illustrates just how pervasive the world of real-time software actually is
and explores some of the techniques of creating that software.

Chapter 3 is the real ‘“‘how-to’’ chapter. There we dissect the process of
software construction into some constituent phases and analyze how to per-
form each one. We look at a mix of practice and theory, perhaps best symbol-
ized by a paper on the generation of a requirements specification that details
the application of still fluid theory to an actual real-time project. We will
despair at some of the obsolete practices in the field—there is a paper on
‘“‘patching,”’ for example—and yet cheer for the amazing success of real-timers
who get these complex systems to work. They do so with a reliability track
record that looks better for software, says another paper, than for other
disciplines.

In chapter 4 we deal with some specifics. There is a collection of tools
that a real-timer needs, and chapter 4 discusses not only what those tools are
but what they should be like. The executive is one of them, and the language
processor is another. A hard look is taken at some key aspects of those and
other tools.

Finally, in chapter 5, we talk about languages for real-time software. Here
the book places a heavy emphasis on pragmatism; some theoretic language ad-
vances are discussed, but the bulk of the material deals with the background
and use of the more (potentially) mainstream languages, including a paper on
Ada.

Before we move on into the material we have introduced, we must per-
form a few housekeeping functions. Think of this as the initialization routine

PREFACE AND SUMMARY vii

for your real-time software system—it may not be very interesting, but nothing
that follows will work well without it!

First of all, this book is a collection of papers. The papers were written by
several real-time software experts. The papers were chosen to cover what your
editor believes are the most important areas of real-time software and have been
grouped into a readable structure.

Second, although these papers are a mix of tutorial and experiential
works, the emphasis here is on the experienced real-time software practitioner
and what will be useful to him or her. Certainly if you have had no previous ex-
posure to software at all, and perhaps if you have had no previous exposure to
real-time software, a tutorial text such as Introduction to Real-Time Software
Design, written by S. T. Allworth (1981), might be a better starting place.
Topics such as the relative efficiency of compiler- and assembler-generated
codes, which are covered later in this book, may have limited value to the novice
but are of critical value to the veteran.

Finally, no technical book is complete without a definition of its subject-
matter terminology. For this book that means defining the term real-time soft-
ware. This can be a surprisingly difficult task—some authors announce the
decision to provide a definition, then cleverly write several pages but never pro-
vide one! However, an initialization routine cannot vacillate. Here we go:

Real-time software is that software that controls a computer that controls a real-
time system. A real-time system is one that provides services or control to an on-
going physical process.

That done, let us proceed to the material at hand.

ACKNOWLEDGMENT AND DEDICATION

Real-time software is a ‘““doing” more than a “’hypothesizing” kind of
business. Because of that, and because of the well-known reluctance of
““doers” to write about what they have done, | owe a deep debt of gratitude
to the authors of the papers that form the substance of this book. Those
papers—and this book —are the creation of doers who cared enough to
share what they have done.

This book is dedicated to all the “’doers” of real-time software.

RoBERT L. GLASS

CONTENTS

Preface and Summary v

1
AN OVERVIEW OF REAL-TIME SOFTWARE 1
The Range of Real-Time Systems (Martin) 3

Software for Process Control—A Survey (Gertler, Sedlak) 12
Difficulties of Real-Time Programming (Martin) 45

2
REAL-TIME APPLICATIONS 59

Seven Reference Systems (Martin) 61

The Three Kinds of Program (Martin) 66

System Technology Program 72

An Environmental Simulator for the FDNY Computer-Aided
Dispatch System (Mohan, Geller) 75

Designing Translator Software (Heckel) 90

3
REAL-TIME METHODOLOGIES 101

Specifying Software Requirements for Complex Systems:

New Techniques and Their Application (Britton) 105

Toward a Discipline of Real-Time Programming (Wirth) 128

SAMS: Addressing Managers’ Needs (Molko) 142

On-Board Computer Timing and Memory Size Monitoring (Prentiss) 155
Real-Time: The “‘Lost World”’ of Software Debugging and Testing
(Glass) 159

Real-Time Checkout: The ‘‘Source Error First’’

Approach (Glass) 173

Software Defenses in Real-Time Control Systems (Connet, Pasternak,
Wagner) 181

An Integrated Simulation and Debugging Facility for a Distributed
Processing Real-Time System (Stinaff) 192

iv

et
(VS I S)

4-4

4-5

4-6

l'IILII
N =

W Lh

CONTENTS

Patching is Alive and, Lamentably, Thriving in the Real-Time World
(Glass) 202

Software Maintenance Planning for Embedded Computer Systems
(Sharpley) 205

Persistent Software Errors (Glass) 218

Software versus Hardware Errors (Glass) 226

Independent Verification and Validation (Reifer) 232

4
REAL-TIME TOOLS AND EXECUTIVES 249

The Top Executive (Martin) 253

Evolving Toward Ada in Real-Time Systems (MacLaren) 261
Guaranteed Response Times in a Hard Real-Time Environment
(Leinbaugh) 283

Creation of a Portable Support Software System Utilizing

an Abstract Machine (Gill, Garrison) 302

Estimation of Computer Resource Overheads Incurred by Using a
High-Level Language (Walters) 320

Performance of the HAL/S Flight Computer Compiler (Martin) 332

5
REAL-TIME LANGUAGES 349

Real-Time Languages and Operating Systems (Elzer, Roessler) 351
Higher Order Languages for Avionics Software—A Survey, Summary,
and Critique (Rubey) 369

A Language for Real-Time Systems 381

Using Preliminary Ada in a Process Control Application (Gordon,
Robinson) 411

TOMAL: A Task-Oriented Microprocessor Applications Language
(Hennessy, Kieburtz, Smith) 431

6
CONCLUSIONS 449

7
BIBLIOGRAPHY 451

Index 454

i
-
- ae
.y
-
pd

AN OVERVIEW
OF REAL-TIME
SOFTWARE

The digital computer is becoming ever more present in the daily lives of all of
us. Computers allow our watches to play games as well as tell time, optimize the
gas mileage of our latest-generation cars, and sequence our appliances. Soon we
may even have computers controlling the heating and lighting patterns in our
homes.

All these computing interactions—be they helpful or intrusive—are ex-
amples of real-time computing. The computer is controlling something which
interacts with reality on a timeable basis. In fact, timing is the essence of the in-
teraction. Our game-playing wristwatch must respond within a few seconds or
we will shake it to see if it is still working. Our car’s optimized carburetor had
better snap to instant attention when we depress the gas pedal. An unrespon-
sive-real-time system may be worse than no system at all.

The computer in a real-time system may not be too different from the
computer in a nonreal-time system. What is really ‘‘real’’ in a real-time system
is the software. Here, in the intangible recesses of the computer’s memory, is
where the input is ingested, the decisions made, and the output sent—all in
whatever quick-as-a-wink timing the real-time system requires.

Efficiency is always a goal in computer software, but in real-time software
efficiency reigns supreme. Real-time systems often use marginal computer
hardware—a little small, a little slow—to cut the cost of the total system. In
those circumstances the real-time software person has to shoehorn too much
software into the too-small machine in such a way that the system interacts with
its external reality acceptably fast.

However, it is not simply efficiency that differentiates real-time software
from other software. The papers which follow give an in-depth analysis of what
characterizes this subject.

These papers take the form of a James Martin sandwich—two papers by
Martin describe (1) what kinds of systems make up the spectrum of real-time
systems, and (2) what difficulties characterize real-time software. In between,
as a solid, meaty filling for the sandwich, is a survey paper on process control
(that is, real-time) software by Janos Gertler and Jan Sedlak.

The Martin papers are taken from his book Programming Real-Time

2 AN OVERVIEW OF REAL-TIME SOFTWARE CHar. 1

Systems. In 1965 this book was the authoritative work on real-time software. In
a field where most information becomes obsolete in well under ten years, what
is amazing is that Martin’s material is still clearly written, accurate, and in-
sightful by today’s standards. Only his example applications begin to feel a little
dated.

In contrast with Martin’s light writing style is the extremely thorough
work of Gertler and Sedlak. Dealing on a level ranging from methodology to
standardization, these two Europeans (Gertler is from Hungary and Sedlak
from Czechoslovakia) have carefully sculpted a master overview of a difficult
subject.

il

VIRKE

4 AN OVERVIEW OF REAL-TIME SOFTWARE CHap. 1

6. The complexity of the Supervisory Programs. This is the Control, or Ex-
ecutive, Program which schedules the work, organizes input and output
operations, and so on. On small systems it can be a fairly simple program
and may involve only a small addition to the standard program packages
provided by the computer manufacturers. On large and complex systems
it can be a very sophisticated and intricate group of programs. ... Its
complexity is determined by:

(a) The complexity of the equipment.

(b) The degree of multiprogramming, that is, the simultaneous process-
ing of transactions.

(c) The complexity of the priority structure. On some systems all transac-
tions have the same priority, but on others there are differences in
priorities between different messages or different functions.

1-1-1 THE COMPLEXITY OF THE EQUIPMENT

The simplest form of a real-time system might have one device, such as a
typewriter, which can send a message to the computer. The computer interrupts
its processing, handles the message, perhaps sends a reply, and then continues
its processing. The computer may have a random-access file attached, and the
typewriter may update or interrogate this. Slightly more complicated would be
a system with several terminals or typewriters. These may be attached to a
buffer or they may be all on one communication line (Figure 1-1-1). Only one

Terminals

4 Random-

Computer ”l‘ access
file

Figure 1-1-1 A system with one communication line.

terminal can send a message at one time. The next step up in complexity would
be to have more than one communications line (Figure 1-1-2).

With two or more lines, message handling may or may not overlap in the
computer. This depends upon the size and throughput of the system. Systems
with a high throughput will process messages in parallel.

With some makes of equipment the communication line is able to go
directly into the computer. The computer assembles the bits and characters
from the line and compiles the messages under program control. With other
systems the communication lines do not go into the computer but into a
separate programmed Multiplexor or Line Control Computer. This is in effect
a small special-purpose computer for controlling communication line input and

Sec. 1-1 THE RANGE OF REAL-TIME SYSTEMS

T ol (3 Random-
erminals Computer UI access
file

Figure 1-1-2 A system with several communication lines.

output. To it can be attached any general-purpose computer which reads data
from it and sends data to it in the same way that it would to any input/output
unit (Figure 1-1-3).

R
. ————]Muitiplexor —-{Com uter Files
Lines P P

Figure 1-1-3 A system with a separate line control computer.

In some systems more than one computer has been used because one com-
puter is not big enough or fast enough. In a two-computer system, one may
handle the input and output to the Line Control device and files, while the other
does the processing. A good reason for this could be that the processing com-
puter is doing nonreal-time work, but is interrupted occasionally by the other
which has assembled some real-time messages ready for processing (Figure
1-1-4).

Computer B in Figure 1-1-4 may be a much more powerful machine than
A. Computer A may handle some simple real-time transactions itself, such as
requests for interrogation of the files. When a transaction requires more com-
plex processing it interrupts computer B. This prepares a reply for A to send
and then continues its other work. Computer A may queue the messages so that
it does not interrupt computer B very often. Computer B may have a program
store on a disk file or drum so that it can load itself with the necessary real-time
programs.

Because of the nature of the real-time work a very high degree of reliabil-
ity may be needed in the system. This may be achieved by duplicating the com-
ponents of the system. If one computer has a breakdown time of .2 percent, two

6 AN OVERVIEW OF REAL-TIME SOFTWARE CHar. 1

2658 -

Computer Computer
A B

Lines —] Multipiexor

I
olelele

Program
store =

Figure 1-1-4 A multicomputer system.

similar machines backing each other up will have a breakdown time of approx-
imately 0.04 percent. ‘“‘Duplexing’’ in this manner increases the equipment
complexity, especially if switchover on failure is to be automatic. A duplexed
version of the system in Figure 1-1-3 is shown in Figure 1-1-5. Many systems
of this type have been installed.

It will be seen here that if a Line Control Unit, computer, or file fails, the
system can be switched so that the duplicate takes over.

The cost of this may not be as prohibitive as it seems at first sight if the
standby computer can be doing other work while standing by. The complexity
of the Supervisory Programs, however, is increased. Every time a file is up-
dated, for example, it is necessary to update both files. If a file breaks down and
is later returned to use, it must be quickly updated with all that it has missed,
and this updating must not interfere with current work using the files.

Triplexing the equipment would, of course, give even higher reliability
but would be even more expensive. On certain special systems, however, very
high reliability is essential, whatever the cost. On the American [space] shots,
for example, the monitoring computer [may even] be quadruplexed.

The configurations illustrated above are the types in common usage. It is
possible to have systems that are much more complex than these, often with
more than two interconnected computers. In systems where the interval be-
tween message arrivals is short and the file access time long, one computer can-

Figure 1-1-5 A duplexed system.

Switch Multiplexor Computer

AWMLY

Lines

|
|
_

Mulfiplexor Computer

Sec. 1-1 THE RANGE OF REAL-TIME SYSTEMS

not cope without multiprogramming, that is, handling two or more transac-
tions at once. In this case, it has been suggested that several small computers
should be used instead and the work split between them. The programming
techniques described . . . relate to systems such as those above. However, the
principles and conclusions that emerge would be applicable to any configura-
tion, not only to these more common ones.

1-1-2 THE RESPONSE TIME

The response time, in this discussion, is the total time a transaction remains in
the computer system, that is, from the time at which it is completely received to
the time at which a reply starts to be transmitted, or, if there is no reply, the time
at which processing is completed.

In a simple case, then, the response time is the time the computer takes to
interrupt what it was doing and to process the transaction. There may,
however, be certain delays involved in the response time. First, there may be
several transactions contending for the computer’s time, so that the transaction
may have to wait in various queues, like a customer going to the Motor Vehicle
Licensing Office at a peak period. Second, the computer may, in some applica-
tions, be doing another job and the transaction will have to wait until it is con-
venient to process it.

In some types of systems a high-speed response time is necessary because
of the nature of the work. The computer has to be programmed to react
quickly. In others it does not matter—a response time of twenty seconds may be
adequate.

The range of response times in some existing applications is shown in
Figure 1-1-6. A bank teller or an airline reservation clerk may desire a response

Figure 1-1-6 Examples of required response times.

S
‘&
)
LSS
[ONNE) N
Q o > &
% RIS
s &8
& @
0}0 A0 @6'\0 &
O > < N & S
& g o “ q? (S5 f
& 5 &8 L8 &S
S & SN S MG S
&S Py S NS
s & & @ L e
S & N 2
¢ Q&
— i, e, .

A L 1 [l Ji L 1 i
T T T T T T T L]
O.Imsec tmsec IOmsec 100 msec 1sec 10 sec 100 sec 1000 sec
I -
Scientific data Service burequ

collection work

8 AN OVERVIEW OF REAL-TIME SOFTWARE CHar. 1

time of three seconds or less, so as to give customers or telephone enquirers the
best possible service. A warehouseman making stock inquiries may be content
with a reply in twenty seconds. For controlling a petroleum plant five minutes
may be adequate, and for sending instructions to the shop floor of a factory
perhaps a half-hour is soon enough. Some scientific control and data logging
applications require . . . much shorter response times than these. Examples are
data logging on a jet engine or rocket motor test bed, scanning radar readouts
or tracking a missile to predict its impact point. The interval between events
may be only a few milliseconds, and the response must be programmed not to
exceed this brief period. A clock or similar device in a computer is used to pre-
vent the computer from being tied up on one transaction so that it cannot pro-
vide this response time when required.

1-1-3 THE INTERVAL BETWEEN EVENTS

The interval between the arrival of transactions at the computer may be random
and determined by external events such as a clerk pressing a key; or it may be
cyclical and governed by a clock or scanning device in the computer.

As with the response time, it may vary from a fraction of a millisecond to
a haif-hour or more. The range of interarrival times is shown in Figure 1-1-7
for some existing applications.

An airline reservation system with a thousand terminals may have trans-
actions pouring into it from all over a country at a rate that will be as high as
twenty per second at peak periods. On the other hand, some inquiry systems
may [have only] an occasional inquiry now and then. A savings bank with a
steady stream of customers into each of its branches at lunchtime might average
about one transaction every two seconds. In a European bank with a large

Figure 1-1-7 Examples of intervals between message arrivals.

O
&
S
1y S
& & &)
N @ oW
- o >
) (&) © £o &
2 o > N &8
O R) QX
s 8 & 8 & Eo L
. £.8 <
& S N < S AL
O & NS & < SO
& \QJ ‘a&}&b N & éo .6
bo'\ g S QQ.)% § ";\QOQ
o 9
53 \ | AN %
A, —A— Ay et e ey . . o
l l ! J\)| l | H
- T T T T T ¥]
O.lmsec 1msec iOmsec 100 msec 1sec 10 sec I00sec 1000sec
R N——— — -
Airline reservation Service burecu

system; large stockbroker work

9

Sec. 1-1 THE RANGE OF REAL-TIME SYSTEMS

number of branches this could be much higher. A typist keying characters into
an on-line terminal may send them at a rate of five to ten per second.

When considering transaction rates for random systems like these, it is
necessary to examine the times of maximum traffic because the system must be
built to handle these peaks. Indeed, it must in some way cater to the very rare
circumstance of all the terminal operators pressing their buttons at the same in-
stant. It will not attempt to process a flood of messages of this magnitude at
once, but, on the other hand, if a momentary transaction peak reaches the com-
puter, none of these messages must be lost.

In radar scanning or data logging applications the inputs are scanned with
a fixed cycle time, This will probably be of the same order as the response time
quoted above.

1-1-4 THE NUMBER OF INSTRUCTIONS
IN THE APPLICATION PROGRAMS

The variation in the number of instructions in the real-time Application Pro-
grams gives a good indication of the range of complexity of these systems.
Some small systems have less than a thousand instructions but the big ones ex-
ceed 200,000. Figure 1-1-8 illustrates this spread.

These figures are for the real-time programs only. In other words, this
mass of coding is in the system ready for use at any one time. The programs
must all fit together like cogs in a machine. Many nonreal-time systems have a

Figure 1-1-8 Number of instructions for on-line work.

v ————

On-line _
savings Airline reservation Airline reservation
bank system not handling system handling

passenger detail passenger detail
records records

